Preview from Notesale.co.uk Page 12 of 100

- PH of Strong Acids and Strong Bases
 Strong acids/Strong bases ordergoes complete dissociation in water 13 of page
 - Calculate pH of a strong acids.
 - Therefore, the pH of a 0.01 mol dm^{-3} of HCl is 2. $HCI \rightarrow H^+ + CI^ 0.01 \rightarrow 0.01 + 0.01$
 - Calculate the pH of 0.00056 mol dm^{-3} of HNO₃. a)
 - Calculate the pH of 0.0000334 mol dm⁻³ of H_2SO_4 . b)
 - Calculate the concentration of HBr that has a pH of 1.35. **c**)

The acid dissociation constant for a monobasic acid = 1.0×10^{10} 2 a) What is the pK_a for the said? 2 CO.UK b) In 0.01 model to

- b) In 0.01 mol main solution of the acid, what is the **Precipient** tration \mathcal{O}^{B} (aq) ions and the pH? 1.0 × \mathcal{O}^{B} mol/dm³; pH = 3
 - 3. The pH of a 1.0 mol dm⁻³ solution of a weak monobasic acid is 4. What is the dissociation constant for the weak acid?
 - a) $1.0 \times 10^{-2} \text{ mol dm}^{-3}$
 - b) 1.0 x 10⁻⁴ mol dm⁻³
 - c) 1.0 x 10⁻⁷ mol dm⁻³
 - d) 1.0 x 10⁻⁸ mol dm⁻³

Red cabbage juice contains a mixture of substances whose color depends on the pH. Each test tube contains a solution of red cabbage juice in water by Othe pH of the solutions varies from pH = 20 (far right) to pH = 11.0 (far right). At pH = 7.0, the potnion is blue.00

- When more base (OH⁻) is added, (2 ways to remove)
- 2. Reacts with H^+ from the ionisation of the ethanoic acid to form H_2O .

I. A buffer is prepared by dissolving 0.25 mol CH₃COONa in 200 cm³ of 0.60 mol dm⁻³ aqueous CH₃COOH. $K_a = 1.85 \times 10^{-5} \text{ mol dm}^{-3}$ Coordinate the proof of the offer. Preview page 51 of the offer.

How many moles of CH₃COONa must be added to 2.00 dm³ of 0.200 mol dm⁻³ ethanoic acid to produce a buffer solution of pH 4.60?

 $K_a = 1.85 \times 10^{-5} \text{ mol dm}^{-3}$

 Calculate the pH of 250 cm³ solution containing 3.68 g HCOOH and 3.06 g HCOONa.

 K_a of HCOOH = 1.8 x 10⁻⁴ mol dm⁻³

Calculate pH when acid/base is added into a buffer.co.uk

- Calculate the phythange to the following buffer solutions when 0.10 moV cm³ KOH(1) is added. [Ka = HCOOH = 1.8 X 10⁻⁴]
- Prea Solution Mixture of 0.20 mol/dm³ HCOOH and 0.20 mol/dm³ HCOOK
 - b) Solution mixture of 1.00 mol/dm³ HCOOH and 1.00 mol/dm³ HCOOK

- Step 1: Write equation,
- Step 2: build I.C.E equilibrium table filling only **no of MOLES**.
- Ste[3: Substitute into formula.

Calculate the pH of a mixture containing 0.1 mol dm⁻³ 2. ethanoic acid and 0.25 mol dm⁻³ sodium ethanoate. (Ka CH3COOH = 1.8×10^{-5} mod Om³) CH3COOH = 1.8×10^{-5} mod Om³) Note Sale Note Sale From 55 of 100 Precalculate the change in pH when 10 cm³ of 1.0 mol dm⁻³

HCl is added to 1 dm^3 of the buffer.

 Calculate the change in pH when 10 cm³ of 1.0 mol dm⁻³ NaOH is added to $I dm^3$ of the buffer.

• If the pH of the Noman brood (7.35-7.45)

- If the pH of the human by 0d (7.35-7.45) is changed by as little as 0.4, it ogg/cDe fatal.
 Page
 - If the pH of the blood is pH < 7.35 acidosis
 - If the pH of the blood is pH > 7.45 alkalosis
 - The pH of the blood is kept by few systems:
 - a) Hydrogencarbonate ions HCO₃⁻
 - b) Dihydrogenphosphate (H₂PO₄⁻) & hydrogenphosphate (HPO₄²⁻)
 - c) Haemoglobin and plasma proteins

 Solubility product, K_{sp} is the product of the concentrations of each ion in a saturated solution of a paringly soluble salt at 298 K, raised to the power of their relative concentrations.
 Write equation & the expression of the solubility produces with its respective units of the following salts:

- BaSO₄,
- $Ca(OH)_2$,
- AI(OH)₃,
- $Ca_3(PO_4)_2$,
- Silver chromate(VI) Ag₂CrO₄

Solubility Exercise uk

- The solubility of chemium physphate, Cd₃(PO₄)₂ is x mol dm⁻³ at 25 °G. What is the expression of the solubility product of cadmium physphate?
 - A. 6x²
 - B. |2x³
 - C. 36x⁵
 - D. 108x⁵
- 2. The solubility of lead chromate, PbCrO₄ is 1.39×10^{-7} mol dm⁻³. Calculate the value of K_{sp} for lead chromate.
- 3. The solubility of manganese carbonate, $MnCO_3$ is 4.2×10^{-6} mol dm⁻³. Calculate the value of K_{sp} for manganese carbonate.

- When aqueous NaCl is added to a solution of AgCl, will a precipitate of AgCl be formed?
- To predict whether a precipitate would be formed or not, we have to the ulate chosolubility quotient, Q of the mixture,
 CO.UK

AgCl (s) \Rightarrow Ag⁺ (aq) + Cl⁻ (aq)

- Q = [Ag⁺] [Cl⁻]
- If $Q > K_{sp}$, a precipitate will be formed.
- If $Q < K_{sp}$, no precipitate will be formed.
- If $Q = K_{sp}$, the solution is saturated.

Step 1: Find the ion concentration (solubility) of the limiting ion from its given Ksp

Step 2: Assume the common ion concentration comes from the added solution Step 3: Find the NEW ion concentration of the limiting ion from the Ksp and the common ion concentration.

Step 4: Crepture the orige and new conc of the limiting ion.

http://www. chemguide.c o.uk/physica l/ksp/comm onion.html

- Exercise 3
- Calculate the mass of PbBr2 precipitated when 200 cm³ of I.0 mol dm⁻³ Pb(NO₃)₂ is acded to 200 cm³ of 2.0 mol dm⁻³ NaBr. K_{sp} PbBr₂ = 00^{-5} mol³ dm⁻⁹.

Question 4 • 1.00 g of X in 100 water was shaken with 10 cm³ of ether Circulate hovernuch mass of X was extracted into the preather layer pc of X = 40.

• 1.00 g of X in 100 cm³ water was shaken with 5 cm³ of ether. Calculate how much mass of X was extracted into the ether layer. K_{pc} of X = 40.

 How much of X would be extracted in total by using the 2 times of 5 cm³ ether for each extraction instead of 1 extraction by using 10 cm³ ether?