When tax-inclusive prices are posted, consumers are likely to optimize relative to the tax-inclusive price and set demand to $x((1 + \tau^s)p, 0)$.

• the demand function in this case can be written as:

$$\log x((1+\tau^s)p,0) = \alpha + \beta \log p + \beta \log(1+\tau^s)$$

hence, the effect of posting the tax-inclusive price on demand is:

$$\log x((1+\tau^s)p,0) - \log x(p,\tau^s) = (1-\theta_\tau)\beta \log(1+\tau^s)$$

• recalling that $\epsilon_{x,p} = -\beta$, we obtain the following estimator for θ_{τ} :

$$(1-\theta_{\tau}) = -\frac{\log x((1+\tau^s)p,0) - \log x(p,\tau^s)}{\epsilon_{x,p}\log(1+\tau^s)}$$

• Remember: $\log(a) - \log(b) \approx rac{a-b}{b}$ and $\log(1+a) pprox a$

$$(1 - \theta_{\tau}) = -\frac{\log x((1 + \tau^{s})p, 0) + cs(p, \tau^{s})}{c} + cO.UK$$

- RHS measure the effect of posting as inclusive prices on demand on decay the effect the greating responding to the size of the tax
- this ratio measures the degree of misperception of total prices when taxes are not included in posted prices
- note that if all consumers normally take the sales tax into account, posting q should have no effect on demand ($\theta_{\tau} = 1$), since it is redundant information
- if all consumers ignore the sales tax, posting q should reduce demand by $\epsilon_{x,p} \log(1 + \tau^s)$, implying $\theta_{\tau} = 0$

Study 1: sales tax of toiletries in department store

Design

- DDD: triple difference estimator
- compared the "within-treatment-store" DiD estimator DD(TS) to a "within-control-store" DiD estimator DD(C)
- Triple difference estimator: DDD = DD(TS) DD(C)

- Rozin et al, 2001: more accessible healthier eating at school
- The Nudge Unit:
 - making public services more cost-effective and easier for citizens to use
 - improving outcomes by introducing a more realistic model of human behaviour to policy
 - enabling people to make 'better choices for themselves'

Criticism:

- "Iam an adult. Stop nudging me"

Preview from Notesale.co.uk Page 30 of 50

	colleges admit these students, 46% go to better college . Other 3: guidance and fee waive kinda effective, net costs (just info) ambiguous
Jensen (2010): info about earnings for poor 1 Perceived earnings and real education level (Present bias) 2 Info and education decision 3 Info on returns and better decision (bounded rationality)	

Bettinger et al, 2012:

3 groups:

- **Control: info booklet**
- er sub group Dependent Participants: Parents received infortesale.co.uk Independent Participants: Self-received

2 smaller sub group

Results:

Help stude pendent or independent the the d treatment Jut insig. n't help,

Summary: Results

- dependants whose parents received the FAFSA treatment were 15.7 percentage points more likely to file the FAFSA application and 8 percentage points more likely to attend college
- independent participants who received the FAFSA treatment were 27 percentage points more likely to file the FAFSA application and 1.5 percentage points more likely to attend college
- information-only treatment had no affect on filing of the form or on college attendance

 \Rightarrow The costs of applying can significantly deter students from applying to financial aid/university and simplifying the application process can significantly increase college attendance rates

- Yes
- RD\$1000 rise in perceived returns (what they expect = yni) increases
 - return school nxt yr 8%
 - finish school 9%
 - years of schooling 0.37 yr

		(2) Returned next year				(6) Years of schooling
Implied perceived returns	0.11*** (0.030)	0.083**	0.14*** (0.036)	0.092**	0.53*** (0.13)	0.37** (0.14)
Log (inc. per capita)	And and a state of the local division of the local division of the local division of the local division of the	0.090	(0.000)	0.25***	(4124)	0.76***
0 1 1		(0.062)		(0.063)		(0.24)
School performance		0.015		0.015		0.093**
		(0.014)		(0.011)		(0.045)
Father finished secondary		0.036		-0.014		0.045
		(0.041)		(0.044)		(0.16)
Age		-0.017		0.006		-0.045
		(0.024)		(0.025)		(0.093)
R^2	.008	.016	.017	.048	.016	.042
Observations	1,003	1,003	1,003	1,003	918	918

- A RD\$1,000 rise in perceived reactor predicts on increase in the probability of returning to school by 8 percentage points, an increase in the likelin could completing secondary school by 9 percentage publis and an increase a spars of education by 0.37 years
- 2 Students do perceive wrongly
 - overestimate earnings with primary school by 11% and underestimate earnings with secondary school by 14% -> bounded rationality, kinda different weights (present bias)

	(1) Measured mean	(2) Perceived (self)	(3) Perceived (others)
Primary	3,180	3,516	3,478
	[1,400]	[884]	[863]
Secondary	4,479	3,845	3,765
	[1,432]	[1,044]	[997]
Tertiary	9,681	5,127	5,099
10. 10. 10. 2	[3,107]	[1,629]	[1,588]
Secondary – primary	1,299	329	287
		[403]	[373]
Tertiary - secondary	5,202	1,282	1,334
		[1,341]	[1,272]

Students overestimate earnings with primary school by around RD\$330 (11%) and underestimate earnings with secondary education by around RD\$700 (14%)

Falk, A., Becker, A., Dohmen, T., Enke, B., Human, D., Sunde, U., Global Evidence on Economic Preferences, Working Paper (2017)

Preferences shape by countries, characteristics of individuals

Types of preferences: (RST !!!)

- Time preferences: wait
- Risk preferences : take risk
- Social preferences
 - Positive reciprocity: return a favor
 - Negative reciprocity: revenge
 - Altruism: give good causes
 - Trust: belief ab intentions

Tools:

a. Preference Module - Falk et al 2015a

What is it? combined survey and experiments

- First comprehensive experimentally-validated preference survey module
- Idea: select those survey items (quantitative and qualitative) that **(jointly) predict behavior** in **incentivized choice experiments best**
 - do the experiments with the small group of ppl in order to select the best street nems that can capture behaviour on the **incentivized choice experiments**
 - Strengths from **both survey and experimental approaches 20 Journ for interpretation**)
- Both quantitative and qualitative questions to the even
 - Qualitative: hypothetical ->
 - Quantitative: number Stale of 1-10, how

 Staircase hethod.
don't preset all que trors but instead asking the direction that best find the answer: finding the switching point -> ask higher or lower values depend on last answer

What is its scale : Global Preference Survey

- Data represent 90% of both world population and world income
- Geographical and cultural representativeness
 - 76 countries, all continents, development levels
 - N = 80000
- Languages (translate back n forth), professional interviewers 100 languages
- Data accuracy:
 - Money values adjusted along median household income of the countries
 - Pretests in 21 countries
 - t-test for all possible pairwise (country with country) comparisons for each preferences, 1%

What is the items in the survey? mixture between self assessment, quantitative and qualitative questions

- Trust only have 1 item -> self assessment
- Risk taking: Do you want to get \$5 for sure of u wanna gamble with .. -> use staircase to see switch point as well
- Trying to capture the incentivized experiments by doing survey

- This is the nice way to test the meaningfulness of the survey: how can it predict behaviours in real world
- 5. Do we see that countries in which people are more patient are more wealthy? patience -> accumulation -> GDP
- Consistency between theoretical work and empirical facts (Falk et al 2015)
- Raw correlation: Patience Contemp. Income 0.63 (R squared 40%)
- Yes, in fact correlation between patience and development (GDP is one factor of development)
- Correlation: Patience vs GDP ---> very strong
 - Holds between groups : continents, (non)-OECD, (not) colonized
 - Extend to other measurement: Patience vs HDI, life satisfaction, GDP/worker
 - Robust to: inflation, interest rates, credit constraints, income level
- Yes, also **correlation between Patience and accumulation** (human cap, physical cap and knowledge) -.> can we use these proxies for patience?
 - Relationship b/w patience and proximate determinants extends to many other proxies for human and physical capital as well as factor productivity
 - Holds for both stocks (years of schooling, capital stocks,...) and flows (savings, education expenditure as % of GDP,...)
 - Correlations very strong: hold conditional on full set of covariate sunces interimes even conditional on GDP (not a third factor causing by Datager ce and accumulation to increase)

5a. How can you check robustness (the grain you condition of being thong and in good condition)

- Control for inflation & interest at
- Proxies for concorrect of borrowing
- Restricting ample to top imory (0, p. 0's (least diverse)
- ***: very significant

-

6. What are the origins of the between-country variation in preferences

Reason 1: differences in preferences across countries have deep historical roots that go back thousands of years, through variety of channel -> because of separation early/late but through WHICH CHANNELS?

- genetic
- experiences
- shocks

Test 1: According to Falk et al: historical events caused differences in preferences (Becker/Enke/Falk, 2016)

Hypo: migration pattern " Out of Africa"

- The idea:
 - Expected difference in preference endowment between 2 populations at a specific point in time would increase in the number of period that 2 pop were separated
 - E (xiT- xjT) increase with no of separations

Separations -> source of channels:

Test 2: 3 class of proxies for temporal distance

- Genetic distance
- Linguistic distance
- Predicted migratory distance measures: WALKING TIME along the optimal route between 2 locations

Framework:

Ancient Origins of the Global Variation in Economic Preferences

• Dyadic regression framework, with each possible pair of countries as unit of observation, regressed on *temporal distance* between respective populations (adjusted for post-Columbian migration)

$$|\mathsf{pref}_i - \mathsf{pref}_j| = \alpha + \beta \times \mathsf{temporal\ distance}_{i,j} + \gamma_i \times d\mathbf{O} \approx d_j + \epsilon_{i,j}$$

1

- *d_i* and *d_j* country fixed effects and the Sountry pair specific disturbance term
- Fixed effect to each of the two countries that appears in a country Darrobservation to take on country-specific unobservables
- dyadic regression
- difference between preferences regressed on temporal distance between 2 populations
- Control for country fixed effects to take out country specific unobservables , include disturbance term

Results:

- the larger the temporal distance between two countries, the larger their (absolute) difference in risk aversion, altruism, trust, positive recip, (patience), (negative rep)
- R-squared is very high: lots of variation in pref between countries can be explained by temporal distance
- Holds for different proxies for temporal distance
- Conditional on country FE, large vector of geographic, economic,
- institutional controls
- . within > between
- . systematic preference between preferences and background char: age, gender, ability
- . preferences -> action
- . patient -> higher accumulation -> higher GDP

Malleability: can be shaped by environmental, pressures etc

- Types of preferences: social preferences & time preferences
- How can it be shaped: home, school (environments)

Mostly papers of social preferences: altruism (nhân đạo), reciprocity (nhân quả) etc

	Background	Data and variation	Experimental Design	Results:
Rao paper - 2013: social preferences - school environment Question: What	Test the effect on social preferences by mixing poor and rich students in Delhi, India 2007, Delhi gov	3 categories: Treatment, Control - 4%, Delayed Treatment-6% (1 year later) Grades: 2-5	. Within school/cohort variation: control for school fixed effect, grade fixed effect -> DID	. Generousity: +increased for the treatment cohorts in the treatment schools (by 10%) +increased the
effect do peers from poor households have on students from relatively wealthy families?	required almost 400 private schools to keep 20% of places for poor children (family who earned <10 dk	Variation sources: . Within schools: treated, control delayed there in Vichin cohorts:	. Idiosyncratic variation classron Puse Ostra mental varariabled Alpha me*AlphaN eighton as an	amorina hared for bots poor (12%) and rich (6%) -> less discriminated, fairer . Discriminating:
. Generosity and prosocial . Behatiour with the poor	rupcenter year): for, teated equally, burues only applied to new admits (control and tractment effect)	Only new entran s are reacting of the second second for the second second second second second second grade 2 in delayed treatment)	instrument for PoorPartner (proof of relevant) -> 2SLS	treated students discriminate less, stakes increase -> no more discriminate
. Classroom behavior	treatment effect)	. Within classroom: Some small groups have poor kids		. Play-date: having poor classmates or poor study partner increase willingness to go on playdate (lower price)
				. Academic outcomes: not significant between subjects
				. Discipline slightly worse in the case of cursing in treated classroom
Kose et al (2015):	Germany - Bonn	3 groups:	.Use Wave 2 means	. High SES and low