ANIMAL COGNITION (I/II) – LEARNING

WHAT IS LEARNING?

Knowledge sources = innate + learned by experience + cognitive (not independent of other 2)

Learning = inferred change in organism's mental state...results from experience...influences, relatively permanently, the organism's potential for subsequent adaptive behaviour

Need to separate from the following 3 phenomena that appear to overlap in some cases

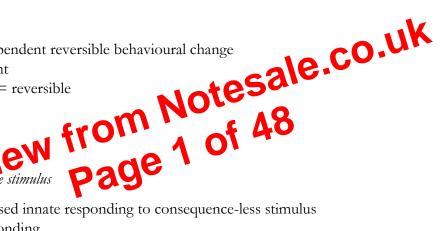
Learning vs performance

- Learning vs. behavioural change
- Learning can be "latent"
 - o Only identifiable experimentally upon observation of behavioural change
 - o E.g. before a lecture vs after a lecture
 - Learning, but no change in behaviour so from an outsider's perspective, wouldn't be able to ID that learning has occurred

Learning vs development

- Learning vs. maturation
- Learning depends on special experience
- Unlearned sexual responses appear at maturity, regardless of experience

Learning vs motivation


Learning vs. state-dependent reversible behavioural change

Learning = permanent

Hunger/arousal etc. = reversible

TYPES OF LEARNING

Non-associative

- Habituation decreased innate responding to consequence-less stimulus
- Sensitisation ^ responding

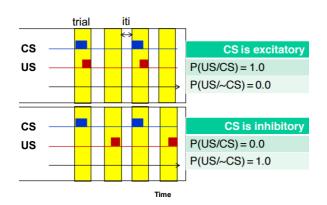
Associative

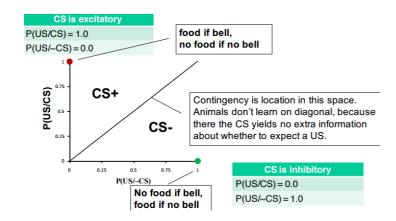
Association of 2+ events

- Classical conditioning
 - o Associations between external events
 - \circ Pavlov => dog and bell
- Operant conditioning
 - o Associations between own behaviour and outcomes
 - Thorndike/Skinner => Skinner box

CONDITIONS FOR ASSOCIATIVE LEARNING

Contiguity


= shorter interval between CS & US


Appropriateness

- = easier recognition of relevance of CSs for USs
 - E.g. smell to taste easy...smell to electric shock less easy

Contingency

- = correlation between CS + US = most important
 - i.e. how often does CS precede US
 - CS can...
 - Predict US presence (excitatory)
 - Predict US absence (inhibitory)
 - Be non-predictive

E.g. rats: tones + electric shocks

- $P = 0.4 \le \text{shock in presence of tone}$
- $P = 0.1, 0.2, 0.3, 0.4 \le$ shock in absence of tone
 - Tone followed by shock equally for 4 groups...BUT reduced response to tone shock when ^ probability of un-signalled shocks
 Learning => decreased uncertainty

 y => no learning

 AB

 O

 A

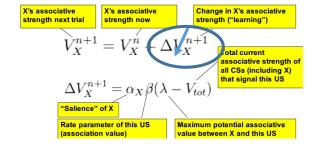
BLOCKING

No uncertainty => no learning

E.g. rats: tones

- Group 1 => noise signals shock...light has no uncertainty to remove...BLOCKING
- Group 2 => noise + light signal shock...rats learn about both

Rescorla-Wagner model


= dominant model explaining blocking

Future associative strength = Current associative strength + Change in associative strength

What causes change in associative strength???

CLASSICAL VS. OPERANT

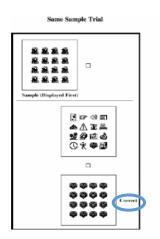
- Associations between external events vs. between own behaviour and outcomes
 - Why is own behaviour not treated as external event? HOTLY DEBATED

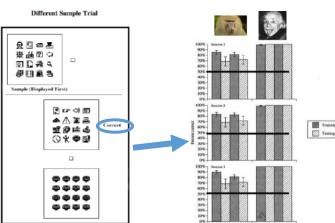
Autoshaping

= classical conditioning phenomenon that assists thinking about this potential divide

E.g. pigeons

E.g. Bhatt et al (1988): pigeons w/4 categories (cats, flowers, cars, chairs)


- More demanding test
- RESULT: > chance once again


Relational learning

= discriminating "equal" vs. "different"

E.g. Fagot et al (2001): baboons vs. humans

- Baboons => > chance
- Humans \Rightarrow 100% correct

E.g. hooded crows

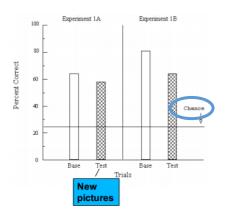
Capable of remembering and IDing rule simultaneously

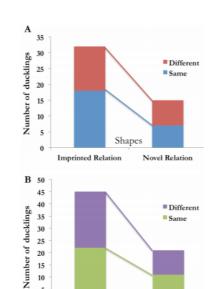
Specialised learning

e simultaneously

OteSale.

Light apparently independent of consequences of behaviour Imprinting = rapid learning @ a particular life

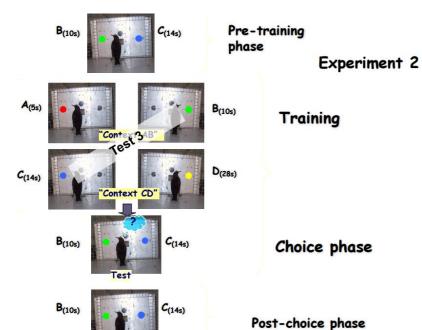

- No stimulus-re
 - sposition to learn certain imp things @ appropriate times
- Filial imprinting...
 - New-borns learn to recognise parents
 - E.g. nidifugous birds learn to follow natural or artificial stimuli soon after hatching
 - Conservation implications...can reintroduce pops


Sexual imprinting...

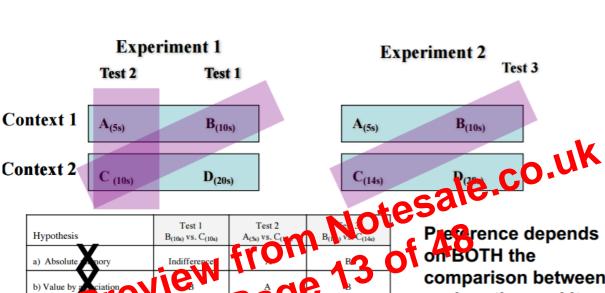
- Juveniles learn characteristics of desirable mates upon reaching sexual maturity
- E.g. problematic in falconry
 - Imprint on keepers
- Can be used for benefit...collect semen that accumulates in imprinted object
- Song learning...
 - o Nestlings learn song from hearing their fathers

To what level of abstraction does imprinting work?

- Will ducklings choose to follow 2 "equal" or "different" items?
 - O No choice initially...chooses what it knows 2nd time around



Colours


Preferred Stimulus Pair During Testing

Imprinted Relation

20 15

- Training...
 - o 1 of 2 contexts
 - AB (more rich)
 - CD (less rich)
- Testing...
 - 1. B (10s) vs. C (10s)
 - 2. A (5s) vs. C (10s)
 - 3. B (10s) vs. C (14s)
- Results...

c) Rememb C В d) Lexicogra combination: -Absolute n priority -Ranking price C C С Indifference Α e) Non-lexicographic combination of absolute memory and ranking RESULTS C Indifference Preference depends on BOTH the comparison between each option and its context and on the absolute physical properties of each option. Are chimps capable of attributing knowledge???

- Test 1...
 - o "guesser" leaves room
 - "knower" hides food
 - "knower" points to baited cup, "guesser" points to empty cup
 - subjects chose between information about hidden food location provided by 2 experimenters
- Results...
 - Chimps point to "knower" more often than "guesser" 0
- Test 2...
 - o Same but "guesser" doesn't leave during food hiding, wears paper bag instead
- Results...
 - 0 Similar
- Conclusion...
 - o Chimps capable of modelling visual perspective of others
- BUT...
 - o Performance @ chance levels for 1st 2 blocks of 50 trials
 - o Associative learning can explain results
 - Chimps failed in further tests
- ...BUT...
 - O Are experimetnters asking too much? Understanding + unnatural actions
 - Implicit vs. explicit understanding

GAZE TRACKING

- Understanding that others see suggests implicit understanding.

 Humans use others' gaze to work out what they're the limit of the limit
- In chimps...
 - Able to follow toze direction (also rave 5 + 90ts)
 - That barriers blo

'SEEING'

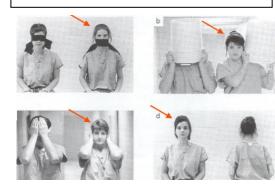
Is there an understanding that others see???

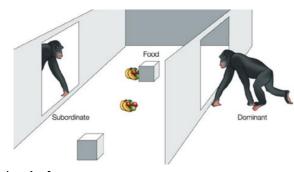
In chimps

Study 1: choose to beg for food from experimenters who can/can't see them

- Results...
 - o Mostly random

Study 2: subordinate chooses between hidden or visible food


- Results...
 - o Hidden food approached first in 73% of trials
- Conclusion...
 - Contradicts results from study 1 and perhaps suggest chimps do know what others see

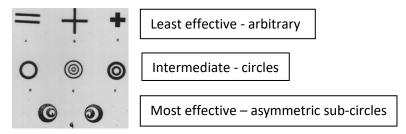

Does 'seeing' imply knowing?

Do chimps understand what dominant sees or just react to dominant as stimulus?

4 conditions:

On the contrary, DOGS do preferentially beg from 'attentive' humans... feasible that this behaviour is learnt however

Competitive feeding paradigm


- Verts = conscious
 - Parts of human brain responsible for consciousness are phylogenetically old, thus shared w/ many spp.
- o Mammals + birds = conscious
- \circ Apes + humans = conscious
 - Parts of human brain responsible for consciousness are phylogenetically young
 - Right neocortex + prefrontal cortex = prerequisites for emotional experiences... absent from other animals
- 3. Humans achieve a lot w/o being conscious
 - Autonomic NS
 - Breathing/playing the piano etc. performed via conscious or unconscious routes
 - Blindsight
 - o = seeing w/o being conscious of seeing
 - o E.g. emotions can be influenced by stimuli that we're unaware of...
 - Brief presentation of happy/sad/angry face affect interpretation of neural ideographs, despite subjects saying they haven't seen any faces
 - o E.g. patient w/ damage to visual cortex => cortically blind in left visual field
 - More accurate than chance when guessing what objects and where they'

Preview from Notesale.co.uk
Preview from 30 of 48
Page 30 of 48

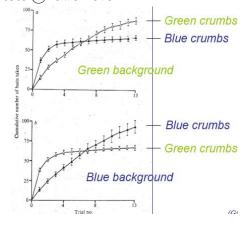
ANIMAL COGNITION (XIII) – RECEIVER PSYCHOLOGY: EVOLUTION OF DEFENSIVE ADVERTISEMENT

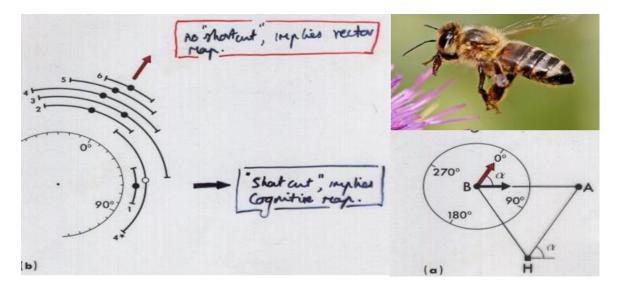
ADVERTISEMENT MECHANISMS

- Flash colouration
 - o Overlaps with mechanisms of concealment
 - o Camo til predator is close...once spotted, no point trying to stay concealed so flash helps escape
 - o DISPLAY TO CONCEAL...fool predator attention mechanisms
- Startle
 - o DISPLAY TO CONFUSE...confound predator expectations
 - Frightening
 - Eye spots...may exploit subliminal reactions

- Deflection
 - o DIVERT ATTENTION from body/towards less crucial body part
 - Inhibits detection of cryptic cues
 - E.g. insect leg flags
 - O No tests actually performed...appears to be on Oeasible hypothesis
- WARNING
 - o Conspicuous colours => unpalatability
 - o APOSEMATISM = warning signal as obliated w/ unprote bility of prey
 - o Gregariousness ^ learning
 - o Multicomponent lays

WARNING PAILS


pag


Aposematism: the role of conspicuousness

- Conspicuous => ^ chance of detection
- Might assume distinctive but as inconspicuous as possible would be ideal...avoids naïve predation
- Does it work?
 - o YES Initial rate of consumption will be greater BUT will asymptote @ lower level
- Hypotheses based on receiver psychology:
 - o More memorable
 - More discriminable
 - o Reduces recognition errors
- A more strategic hypothesis:
 - Conspicuousness = handicap
 - Only genuinely unpalatable prey can afford it

Gregariousness enhances learning

- Predators...
 - o Learn quicker
 - o Forget slower
- Enhancement is visual (not chemical)
 - o Green line matches red => visual aggregation is important

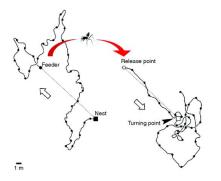
E.g. Pigeons

- Very local shortcuts only
 - Explained by sighting of familiar landmarks on route ahead
 - Gradually ^ efficiency over each rep

E.g. Rodents

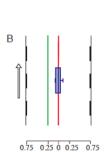
- Many expts have suggested they can take novel shortcuts
 - o Can often be explained by simpler local rules
- Do animals learn geometry of familiar space or use simple rules?

E.g. Ants

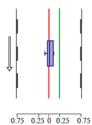

tesale.co Can constantly update homeward vectors. integration

Simple visual centring respos

In clutte et el


No response to hete og decos stationary/moving black/white gratings

- Only respond to wall height...vertical angles subtended by the walls must be identical
- Learn simple relationships with landmarks
 - Stay certain distance away



Lateral deviation (m)

Lateral deviation (m)