Find the derivatives of inverse functions.

The inverse of an ordered pair (x, y) is (y, x).

$$f(x) = y \Leftrightarrow x = f^{-1}(y).$$

Theorem: Let f(x) represent a differentiable on an interval. If $f^{-1}(x)$ denotes the inverse of f(x), then $f^{-1}(x)$ is differentiable at any x and

$$\left[f^{-1}(x)\right]' = \frac{1}{f'[f^{-1}(x)]}$$

where $[f^{-1}(x)]'$ denotes the derivative of inverse of f(x), f'(x) is the derivative of f(x) and $f'[f^{-1}(x)] \neq 0$. **Proof:** If $f^{-1}(x)$ is the inverse of $f^{-1}(x)$, then $f[f^{-1}(x)] = f^{-1}f(x) = f^{-1}f$

Dividing equation (1) by $f'[f^{-1}(x)]$,

 $[f^{-1}(x)]' = \frac{1}{f'[f^{-1}(x)]}$, where $[f^{-1}(x)]'$ is the derivative of the inverse of f(x) and $f'[f^{-1}(x)] \neq 0$.

The formula $[f^{-1}(x)]' = \frac{1}{f'[f^{-1}(x)]}$ can be used to find the derivative of an inverse