	MUST TO KNOW IN CLINICAL CHEMISTRY
(From CC by Rodriguez)	
	Quality Control
Practicability	Method is easily repeated
Reliability	Maintain accuracy and precision
Intralab/Interlab QC	Daily monitoring of accuracy and precision
Interlab/External QC	Proficiency testing (Reference lab)
	Long-term accuracy
	Difference of >2: not in agreement w/ other lab
QC materials	Available for a min. of 1 yr
Bovine control materials	Preferred (Human: biohazard)
	Not for immunochem, dye-binding and bilirubin
Matrix effect	Improper product manufacturing
	Unpurified analyte
	Altered protein
Precision study	First step in method evaluation
Nonlab. personnel	29% of errors (lab results)
SD	Dispersion of values from the mean
CV	Index of precision
	Relative magnitude of variability (%)
Variance	SD ²
	Measure of variability
Inferential statistics	Compare means or SD of 2 groups of data o
T-test	Means of 2 groups of data
F-test	SD of 2 groups of data
Cumulative Sum Graph	V-mask
(CUSUM)	Earlies if doction of systematic errors (trend)
Youden/Twin Plot	Compare results obtained from diff. lab
Shewhart Leven Jon 2018	Graphic concernment of the acceptable limits of variation
Chart	
Trend	Gradual loss of reliability
	Cause: Deterioration of reagents (Systematic error)
Shift	Values: one side or either side of the mean
	Cause: Improper calibration (Systematic error)
Outliers	Values: far from the main set of values
	Highly deviating values
	Random or systematic errors
Kurtosis	Degree of flatness or sharpness
Precision	Random error
Accuracy	Systematic error
Random error	Causes:
(Imprecision;	-Mislabeling
Indeterminate)	-Pipetting error
	-Improper mixing of sample and reagents
	-Voltage/Temperature fluctuation
	-Dirty optics
	Parameters: SD and CV
Systematic error	Causes:
(Inaccuracy/Determinate)	-Improper calibration
	-Deterioration of reagents
	-Contaminated solution
	-Sample instability/unstable reagent blanks

Isoelectric focusing	Molecules migrate through a pH gradient
	pH = pI
	For isoenzymes: same size, different charge
Densitometry	Scan & quantitate electrophoretic pattern
Capillary electrophoresis	Electro-osmotic flow
Southern blot	DNA
Northern blot	RNA
Western blot	Proteins
Chromatography	Separation by specific differences in physical-chemical characteristics of the
	different constituents
Paper chromatography	Fractionation of sugar and amino acid
	Sorbent: Whatman paper
TLC	Screening: Drugs
Retention factor (R _f) value	Relative distance of migration from the point of application
	$R_{\rm f}$ = Distance leading edge of component moves
	Total distance solvent front moves
Gas chromatography	Separation of steroids, barbiturates, blood, alcohol, and lipids
	Volatile compounds
	Specimens \rightarrow vaporized
	Mobile phase: Inert gases
Gas Solid chromatography	Differences in absorption at the solid phase surfaces
Gas Liquid chromatography	Differences in solute partitioning between the gaseres modile phase and the
	liquid stationary phase
Mass Spectrometry	Fragmentation and ionization
GC-MS	Gold standard for drug theme
MS/MS	Detect 20 inhorn errors of metabolism from a single blood spot
HPLC	Most widel, Used liquid chromography Additionation of drugs, learnones, lipids, carbohydrates and proteins
Hydrophilic geb y C	Gel filtren no C
PI0	Separati in or enzymes, antibodies and proteins
	Ex: Dextran and agarose
Hydrophobic gel	Gel permeation
	Separation of triglyceride and fatty acid
	Ex: Sephadex
Ion exchange	Separation depends on the sign and ionic charge density
chromatography	
Partition chromatography	Based on relative solubility in an organic solvent (nonpolar) and an aqueous
	solvent (polar)
Affinity chromatography	For lipoproteins, CHO and glycated hemoglobins
Adsorption	Based on differences between the adsorption and desorption of solutes at the
chromatography	surfaces of a solid particle
Fluorometry/Molecular	Det. amt. of lt. emitted by a molecule after excitation by electromagnetic
Luminescence Spectro.	radiation
	Lt. sources: Mercury arc and Xenon lamp (UV)
	Lt. detector: Photomultiplier tubes
	2 monochromators:
	Primary filter – selects wavelength absorbed by the solution to be measured
	Secondary filter – prevents incident light from striking the photodetector
	Sensitivity: 1000x than spectro
Quenching	Major disadvantage of fluorometry
	pri and temperature changes, chemical contaminants, UVL changes

	Increased: "P(u)BLIC"
	Proteins
	BUN
	Lipids
	Iron
	Calcium
Standing \rightarrow Supine	Hemodilution
	Decreased: "TLC"
	Triglycerides
	Lipoproteins
	Cholesterol
Prolonged standing	Increased: K ⁺ (muscles)
Prolonged bedrest	Decreased: Albumin (Fluid retention)
Tourniquet	Recommended: 1 minute application
Prolonged tourniquet ann	Hemoconcentration
r rolongeu tour inquet app.	Anaerohiosis
	Increased: "Cal FAaK"
	Calcium
	Cholesterol
	Lactate
	Fnzymes
	Ammonia
	Alhumin
Tobacco smoking (Nicotino)	Increased: "TUNCoCo" 1 0 50
Tobacco smoking (Nicotine)	Triglycerides
	IIrea Carolina 6 6 4
	Nepsterfied fatty acid
Drevi	CH DAGE
	Catecholomines
	Corticol
	Chalostaral
Alcoholingostion	Increased, "THUC"
Alcohol higestion	Trighteerides
	Hunoglyceriues
	Iria agid (Iratea
Ammonia	GGI
Ammonia Streeg (apprints)	Increases by 100-200µg/L/Cigar
Stress (anxiety)	Increased: LAGIC
	Glucose
Davida	Cholesterol Medientione effecting plasma volume can effect protein DUN iron, coloium
Drugs	Medications affecting plasma volume can affect protein, BON, fron, calcium
	Repatotoxic drugs: increased liver function enzymes
Diverse la servica ti a se	Diureucs: decreased sodium and potassium
Jurnal variation	$\left \frac{LA_3P_1}{C_{\text{entrice}}} \right $
	ACTH
	ACP

	For ESR
Respinning gel tubes	Increases potassium
Thixotropic gel	Gel separator (SG: 1.04)
	Serum: (SG: 1.03)
	RBC: (SG: 1.05)
	Laboratory Mathematics
% w/v	Grams of solute = <u>% solution desired x total volume desired</u> 100
% v/v	mL of solute = % solution desired x total volume desired
	100
% w/w	Grams of solute = <u>% solution desired x grams of the total solution</u>
	100
Molarity	M = <u>grams of solute</u>
	GMW x volume of solution
Moles	Mol = <u>weight (grams)</u>
	GMW
To prepare a molar solution	Grams of solute = Molarity x GMW of the solute x Volume (L) desired
To convert % w/v to	$M = \frac{9}{2} \frac{w}{v} \cdot \frac{10}{2}$
Molarity	GMW
Normality	N = <u>Grams of solute</u>
Equivalent weight (EW)	Ew x volume (L)
Equivalent weight (Ew)	
To prepare a normal	Grams of solute - Normality x FW - John And
solution of solids	drains of soluce – Normanty A Experime (E)
solution of solids	m Note 54
To convert % w/v to	N = w/(10)
Normality	EW EW
Normality Drev	N = Molerity V 1 erce
Molarity	M = <u>Normalicy</u> valence
Molality	m = Grams of solute
	MW x kg of solvent
Milliequivalents	$mEq/L = mg/dL \cdot 10 \cdot valence$
	MW
Millimoles	$\frac{\text{mmol/L} = \frac{\text{mg/dL} \bullet 10}{\text{MW}}}{\text{MW}}$
Ratio	Ratio = Volume of solute
	Volume of solvent
Dilution	Dilution = <u>Volume of solute</u>
	Volume of solution
0.179	Conversion factor for iron (mg/dL \rightarrow µmol/L)
0.01	Conversion factor for phospholipid (g/dL to g/L)
2.27	Conversion factor for folate
Analytical reagent (AR)	For qualitative and quantitative analyses
grade	For accuracy
	Established by American Chemical Society (ACS)
	Uses: Trace metal analysis and preparation of standard solutions
Ultrapure reagents	Additional purification steps
	Ex: Spectrograde, nanograde, HPLL grade
Chamically Dura (CD) or	Uses: Unromatography, atomic absorption, immunoassays
chemically Pure (CP) or	I multates that the impurity limitations are not stated

	1-Hr = 20-50 mg/dL above fasting
	2-Hr = 5-15 mg/dL above fasting
	3-Hr = fasting level or below
	Lipids
Phospholipids	Most abundant lipid
	Amphipathic: polar (hydrophilic head) and nonpolar (hydrophobic side chain)
Sphingomyelin	Reference material during 3 rd trimester of pregnancy
	Concentration is constant as opposed to lecithin
	Not derived from glycerol but from sphingosine (amino alcohol)
Forms of phospholipids	70% Lecithin/Phosphatidyl choline
	20% Sphingomyelin
	10% Cephalin
TLC + Densitometric	Method for L/S ratio
quantitation	
Microviscosity	Measured by fluorescence polarization
Cholesterol	Not a source of fuel
	Not affected by fasting
	70% Cholesterol ester (plasma/serum)
	30% Free cholesterol (plasma/serum and RBC)
LCAT	Esterification of cholesterol
Аро А-1	Activator of LCAT
Cholesterol increases after	2 mg/dL/year between 50 and 60 years old
the age of 50	
Liebermann Burchardt	Cholestadienyl Monosulfonic acid C 2
	Green end color
Salkowski	Cholestadienyl Disulfont- acid
	Red en a to bu
Color developer mixture	cinial acétic acid
(Cholesterol) Drev	Acetic appropriate
One stan mathed	Coloring structure (Decrease Storm and Mag Coverely)
Two stop method	Color + Evtraction (Ploor's)
Three step method	Color + Extract + Sanonification (Aboll Kondall)
Four stop method	Color + Extract + Saponinication (Abeli-Kenuali)
Four-step method	(Schoonhoimor Sporry, Darokh and Jung)
Aboll Lowy and Prodio mtd	CDC reference method for choloctoral
(Chamical mathod)	Hydrolysis (saponification (Ale KOH)
(chemical method)	-Hevane extraction
	-Colorimetry (Liebermann-Burchardt)
Triglycerides	Most insoluble linid
	Main storage linid in man (adinose tissue) – 95%
	Fasting: 12 hours
Triglyceride increases after	2 mg/dL/year between 50 and 60 years old
the age of 50	
Van Handel & Zilversmith	Chromotropic acid
(Colorimetric)	(+) Blue color compound
Hantzsch Condensation	Diacetyl acetone
(Fluorometric)	(+) Diacetyl lutidine compound
Modified Van Handel and	CDC reference method for triglycerides:
Zilversmith	-Alkaline hydrolysis
(Chemical method)	-Chloroform extraction \rightarrow extract treated w/ silicic acid
	-Color reaction w/ chromotropic acid – meas. HCHO

	RBC: 150x LDH than in serum
	Sources:
	LD_1 (α -HBD) and LD_2 = Heart, RBC, Kidneys
	LD_3 = pancreas, lungs, spleen
	LD_4 an LD_5 = liver and muscle
	LD_6 = alcohol dehydrogenase
Methods (LDH)	1. Wacker method (forward/direct) = pH 8.8, 340 nm, most commonly used
	2. Wrobleuski LaDue (reverse/indirect) = pH 7.2, 2x faster
	3. Wrobleuski Cabaud
	4. Berger Broida
10-fold increase (LDH)	Hepatic carcinoma and toxic hepatitis
2-3x URL	Viral hepatitis and cirrhosis
Creatine Kinase	Isoenzymes:
	CK-BB = most anodal, brain
	CK-MB = myocardium (20%)
	CK-MM = least anodal, skeletal and smooth muscles (Major, 94-100%)
Duchenne's muscular	Total CK: 50x URL (highest)
dystrophy	
CK-MB	Most specific indicator of myocardial damage (AMI)
	Not elevated in angina
Methods (CK)	1. Tanzer-Gilbarg (forward/direct) = pH 9.0, 340nm
	2. Oliver-Rosalki/ Rosalki & Hess (reverse/indirect) = most commonly used
	method, faster reaction; pH 6.8, 340nm
Adenylate kinase	Inside RBCs
	Interferes w/ CK assay
	Inhibited by adencesing a comphosphate
N-acetylcysteine	Activate KO
Liver cells and RBC	Any ot contain CK
Cleland's reagent and	Partially restored activity of CK
glutathione	Pag-
Electrophoresis	Reference method for CK
CK relative index (CKI)	CKI (%) = CK-MB/Total CK x 100
Aldolase	Isoenzymes:
	Aldolase A = Skeletal muscles
	Aldolase B = WBC, liver, kidney
	Aldolase C = brain tissue
5' Nucleotidase	Marker for hepatobiliary diseases and infiltrative lesions of the liver
	Methods:
	1. Dixon and Purdon
	2. Campbell, Belfield and Goldberg
GGT	Located in the canaliculi of the hepatic cells
	Differentates the source of an elevated ALP level
	Sensitive indicator of occult alcoholism
	Increased:
	Obstructive jaundice
	Alcoholic hepatitis (most sensitive)
Methods (GGT)	Substrate: gamma-glutamyl-p-nitroanilide
	1. Szass
	2. Rosalki and Tarrow
	3. UTIOWSKI
Lnolinesterase/	Monitor effects of relaxants (succinylcholine) after surgery

contractility	Calcium
Neuromuscular excitability	Magnesium
Cofactors (enzyme)	Calcium
	Magnesium (CK)
	Zinc
	Chloride (AMS)
	Potassium
ATPase ion pump	Magnesium
Production and use of ATP	Magnesium
from glucose	Phosphate
Acid-base balance	Bicarbonate
Replication of DNA and	Magnesium
translation of mRNA	
Sodium	Major contributor of osmolality (92%, together w/ Chloride and Bicarbonate)
	\uparrow 100 mg/dL glucose = ψ 1.6 mmol/L sodium
Aldosterone	↑Sodium
	Ψ Potassium = Ψ Magnesium
Atrial natriuretic factor	↓ Sodium
Hypernatremia	Excess water loss
	Decreased water intake
	Hyperaldosteronism (Conn's disease)
	Hypothalamic disease (Chronic hypernatremia)
Hyponatremia	Renal failure
	SIADH (increased water retention)
	Marked hemolysis (dilutional effect)
	<125 mmol/L = covert nour opsychiatric aymptoms
Thirst	Major defense against hyperosmo ality and hypernatremia
	A 16 water deficit = sete e thirst
previ	150-160 mEq 21.37 = Moderate deficit of water
	>165 mag d N=0 = Severe water deficit
Pseudonyponatremia	Hyperlipidemia (turbidity)
(artifactual)	Hyperproteinemia
Methods (Na ⁺)	
	2. AAS
	3. ISE = Glass aluminum silicate
	4. Colorimetry = Albanese Lein
Potassium	Concentration in RBC is 105 mmol/L
	Reciprocal relationship with H ⁺
Specimen Considerations	0.5% nemolysis = $\uparrow 0.5$ mmol/L
(K ⁺)	Gross nemolysis = \uparrow 30%
	◆10.200(in muscle estimity
	\uparrow 10-20% in muscle activity
	10.3-1.2 mmol/L = mind to moderate exercise
	$\sqrt{2-3}$ mmol/L = vigorous exercise; fist clenching
пурегкајенна	Decreased results memorate potential \neg incr. contractility \neg lack of muscle
	Excitability Decreased renal excretion (Debudration renal failure Addison's disease)
	Acidosis (DM)
	Muscle injury
	Snironolactone
Hypokalemia	Increased resting membrane notential \rightarrow arrhythmia

	Cancer
	Hyperthyroidism
	Milk-alkali syndrome
Hypocalcemia	Tetany
	Alkalosis (Ca ²⁺ : from Blood \rightarrow Bones)
	Acute pancreatitis (Ca ²⁺ : binds to damage pancreatic tissues)
Primary hypocalcemia	Low PTH
	Parathyroid gland disease
Secondary hypocalcemia	High PTH
	Renal failure (recretion)
Methods (Ca ²⁺)	1. Clark Collip precipitation method
	-(+) Oxalic acid
	-Renal calculi
	2. Ferro Ham Chloranilic acid precipitation method
	-(+)Chloranilic acid
	3. Colorimetric = Ortho-Cresolphthalein complexone dyes
	-Dye: Arzeno III
	-8-hydroxyquinoline = chelates (inhibits) Mg ²⁺
	4. EDTA titration method (Bachra, Dawer and Sobel)
	5. AAS = Reference method
	6. ISE = Liquid membrane
	7. FEP
Inorganic Phosphorus	85% → Bones
	$15\% \rightarrow ECF (iPO_4)$
	Maximally absorbed in the joint and Ca ²⁺ : duodenum)
	Trancellular shift: Once boorbed inside calls, it no longer comes out \rightarrow used for
	energy pro union
	Diminal variation: \uparrow log morning, \lor evening
	• Organic phosphate - principal anion within cells
pie.	Inorganic ransonate = part of the blood buffer (Measured in the clin.lab.)
3 Forms of Inorganic	55% = Free
Phosphorus	35% = Complexed with ions
	10% = Protein-bound
PTH	$\mathbf{\Psi} \operatorname{PO}_4 = \mathbf{\uparrow} \operatorname{Ca}^{2+}$
Calcitonin	$\wedge PO_4 = \Psi Ca^{2+}$
Growth hormone	\wedge PO ₄ (renal reabsorption)
Practical considerations	Fasting is required (Nonfasting: \checkmark PO ₄)
Hyperphosphatemia	Hypoparathyroidism
	Renal failure
	Hypervitaminosis D
Hypophosphatemia	Alcohol abuse = most common cause
	Primary hyperparathyroidism
	Avitaminosis D (Rickets, Osteomalacia)
Methods (iPO ₄)	Most accurate: unreduced phosphomolybdate formation (340nm)
	1. Fiske Subbarow Method (Ammonium molybdate method)
	-Reducing agents: Pictol, Elon, Senidine, Ascorbic acid
	-(+) Phosphomolybdenum blue
Magnesium	$53\% \rightarrow Bones$
	$46\% \rightarrow$ Muscles and soft tissues
	$1\% \rightarrow$ Serum and RBC
	Vasodilator
3 Forms of Magnesium	55% = Free/Ionized/Physiologically active

Regulation of Acid-Base	Lungs and Kidneys
balance	$CO_2 + H_2O <(Carbonic anhydrase)> H_2CO_3$
	$H_2CO_3 <(Carbonic anhydrase)> H^+ + HCO_3^-$
20:1	HCO ₃ : H ₂ CO ₃ ratio
4:1	HPO ₄ : H ₂ PO ₄ ratio
Expanded Henderson-	$pH = 6.1 + log [Total CO_2 - (pCO_2 \times 0.03)]$
Hasselbalch equation	pCO ₂ x 0.03
Chloride-isohydric shift	Buffering effect of hemoglobin
pCO ₂	Index of efficiency of gas exchange
	Increased: Barbiturates, morphine, alcohol, <u>heparin</u> (12-15%)
pO ₂	Reflects the availability of the gas in blood but not its content
	Excessive O_2 supply \rightarrow acidosis
Metabolic Acidosis	Causes:
	-Bicarbonate deficiency
	-DKA (normochloremic acidosis)
	-Renal failure
	-Diarrhea (Ψ HCO ₃ -)
	Compensation: Hyperventilation
	Compensated: ψ HCO ₃ ⁻ + ψ pCO ₂ + pH <7.4
Metabolic Alkalosis	Causes:
	-Bicarbonate excess
	-Vomiting (ψ Cl ⁻)
	-Hypochloremia
	-Hypokalemia
	Compensation: Hypoventilation
	Compensated: $\triangle HCO \ge 1 \rho CO_2 + pH > 7$
Respiratory Acidosis	Causes
	(A excess (Hypoventration)
Drev	COPD
PI0	-Drug verdise morphine, barbiturates, opiates)
	Compensation: Bicarbonate retention
	Compensated: \uparrow HCU ₃ + \checkmark pCU ₂ + pH <7.4
Respiratory Alkalosis	Co loss (Um amontilation)
	$-CO_2 loss (Hyperventilation)$
	Compensation: Bicarbonate excretion
Full common patient	Compensated: Ψ HCO ₃ + Ψ pCO ₂ + pH >7.4
Pull compensation	pH 7 normal range
Partial compensation	PH → near normal
Buller base	All forms of base that will utrate hydrogen ions
methous for blood Gases	Blood gas englyments mean pll pCO pO
Eastara affecting Placed	Ear grows $\triangle 100$ chore 2700 .
Factors affecting Blood	For every 71°C above 37°C:
gases & primeasurements	Ψ pr by 0.015
	$4 \text{ pO}_2 \text{ by } 7\%$
	$\Gamma_{\rm p}$ ($V_{\rm p}$) Bacterial contamination: consume $\Omega_{\rm s}$ ($V_{\rm p}\Omega_{\rm s}$)
	Excess honarin (acid MDS) = \sqrt{mH}
	$\frac{\text{Excess fleparin (actu MFS)}}{\text{Air exposure (bubbles)}} = \Psi pri$
	$\frac{A \Pi exposure [Dubbles]}{\Delta n \Omega_{e}} = 4 \text{ mmHg}/2 \text{mins}$
	$\sqrt{1002} - 4 \text{ mmHg}/2 \text{mms}$ $\sqrt{1002} - 4 \text{ mmHg}/2 \text{mms}$
	• poo ₂ - + mmig/ 2mms
Methods	1 Gasometer
inculous	