
pKa Values

- pKa value < 0 indicates a strong acid • pKa value > 0 indicates a weak acid
- HB \rightarrow H⁺ + B⁻ (equilibrium) $k = [H^+][B^-]/[HB]$ if k > 1 favoured (more of the top present) and pKa is -ve if k < 1 unfavoured (more of bottom present than the top present) and pKa is +ve
- $pKa = -log_{10}Ka$ therefore pKa = 0 when there is a 50/50 equilibrium
- Pauling's rules:
 - In oxy acids of formula $(HO)_{x}E(O)_{y}$, pKa = 8 5y For subsequent deprotonation add 5 to original pKa value
 - E.g. $H_2SO_4 = (HO)_2SO_2 pKa = 8 (2x5) = -2$ This is $H_2SO_4 \rightarrow H^+ + HSO_4^-$
 - For $HSO_4^- \rightarrow H^+ + SO_4^{2-}$, pKa = -2 + 5 = +3 (not so easily deprotonated)
 - If there are no hydroxyl groups attached: pKa is 8 0
 - Such as Si(OH)₄, B(OH)₃
 - Any variation: could be due to many things 0
 - Such as H₂CO₃ (carbonic acid): predict +3. Actual pKa is +6.4. Due to equilibrium – lies to the left, on $CO_2 + H_2O$ side – less carbonic acid than esale.co.uk expected, so acidity is lower.

Lewis acids and Lewis bases

- Acid electron pair acceptor (electrophile) •
 - H⁺ (the Bronsted acid)
 - M²⁺ gaseous state, bind igands (such as co
 - Molecules Vite Acomplete og ets malectrons: such as BMe₃, AlCl₃ (both
 - electrons) Molecules with contest that can rearrange their electrons, such as CO₂ - oxygens withdraw electrons from carbon, leaving the carbon electrophilic (an acidic electron acceptor)
 - Molecules with complete octets that can accept further electron pairs, such as SiF₄ + 2F⁻ \rightarrow [SiF₆]²⁻ becomes octahedral; uses 3d orbitals to expand from an octet
- Base electron pair donor (nucleophile)
 - Together they can form an adduct: $A + B \rightarrow A-B$
 - $BF_3 + NH_3 \rightarrow F_3B-NH_3$

LUMO-HOMO interaction

- Forms a covalent (dative/coordinate) bond
- Displacement reactions can also occur
 - A stronger Lewis base can displace a weaker Lewis base from its adduct
 - $F_3B-OEt_2 + pyridine \rightarrow F_3B-py + Et_2O$