
Preface

Here are the course lecture notes for the course MAS108, Probability I, at Queen
Mary, University of London, taken by most Mathematics students and some others
in the first semester.

The description of the course is as follows:

This course introduces the basic notions of probability theory and de-
velops them to the stage where one can begin to use probabilistic
ideas in statistical inference and modelling, and the study of stochastic
processes. Probability axioms. Conditional probability and indepen-
dence. Discrete random variables and their distributions. Continuous
distributions. Joint distributions. Independence. Expectations. Mean,
variance, covariance, correlation. Limiting distributions.

The syllabus is as follows:

1. Basic notions of probability. Sample spaces, events, relative frequency,
probability axioms.

2. Finite sample spaces. Methods of enumeration. Combinatorial probability.

3. Conditional probability. Theorem of total probability. Bayes theorem.

4. Independence of two events. Mutual independence of n events. Sampling
with and without replacement.

5. Random variables. Univariate distributions - discrete, continuous, mixed.
Standard distributions - hypergeometric, binomial, geometric, Poisson, uni-
form, normal, exponential. Probability mass function, density function, dis-
tribution function. Probabilities of events in terms of random variables.

6. Transformations of a single random variable. Mean, variance, median,
quantiles.

7. Joint distribution of two random variables. Marginal and conditional distri-
butions. Independence.

iii
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1.10. INDEPENDENCE 15

mobile phone. Then

P(A) = 52/104 = 0.5,

P(B) = 87/104 = 0.8365,

P(C) = 83/104 = 0.7981.

Furthermore,

P(A∩B) = 45/104 = 0.4327, P(A) ·P(B) = 0.4183,

P(A∩C) = 39/104 = 0.375, P(A) ·P(C) = 0.3990,

P(B∩C) = 70/104 = 0.6731, P(B)∩P(C) = 0.6676.

So none of the three pairs is independent, but in a sense B and C ‘come closer’
than either of the others, as we noted.

In practice, if it is the case that the event A has no effect on the outcome
of event B, then A and B are independent. But this does not apply in the other
direction. There might be a very definite connection between A and B, but still it
could happen that P(A∩B) = P(A) ·P(B), so that A and B are independent. We
will see an example shortly.

Example If we toss a coin more than once, or roll a die more than once, then
you may assume that different tosses or rolls are independent. More precisely,
if we roll a fair six-sided die twice, then the probability of getting 4 on the first
throw and 5 on the second is 1/36, since we assume that all 36 combinations of
the two throws are equally likely. But (1/36) = (1/6) · (1/6), and the separate
probabilities of getting 4 on the first throw and of getting 5 on the second are both
equal to 1/6. So the two events are independent. This would work just as well for
any other combination.

In general, it is always OK to assume that the outcomes of different tosses of a
coin, or different throws of a die, are independent. This holds even if the examples
are not all equally likely. We will see an example later.

Example I have two red pens, one green pen, and one blue pen. I choose two
pens without replacement. Let A be the event that I choose exactly one red pen,
and B the event that I choose exactly one green pen.

If the pens are called R1,R2,G,B, then

S = {R1R2,R1G,R1B,R2G,R2B,GB},
A = {R1G,R1B,R2G,R2B},
B = {R1G,R2G,GB}
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20 CHAPTER 1. BASIC IDEAS

Example We can always assume that successive tosses of a coin are mutually
independent, even if it is not a fair coin. Suppose that I have a coin which has
probability 0.6 of coming down heads. I toss the coin three times. What are the
probabilities of getting three heads, two heads, one head, or no heads?

For three heads, since successive tosses are mutually independent, the proba-
bility is (0.6)3 = 0.216.

The probability of tails on any toss is 1− 0.6 = 0.4. Now the event ‘two
heads’ can occur in three possible ways, as HHT , HT H, or T HH. Each outcome
has probability (0.6) · (0.6) · (0.4) = 0.144. So the probability of two heads is
3 · (0.144) = 0.432.

Similarly the probability of one head is 3 · (0.6) · (0.4)2 = 0.288, and the prob-
ability of no heads is (0.4)3 = 0.064.

As a check, we have

0.216+0.432+0.288+0.064 = 1.

1.13 Worked examples
Question

(a) You go to the shop to buy a toothbrush. The toothbrushes there are red, blue,
green, purple and white. The probability that you buy a red toothbrush is
three times the probability that you buy a green one; the probability that you
buy a blue one is twice the probability that you buy a green one; the proba-
bilities of buying green, purple, and white are all equal. You are certain to
buy exactly one toothbrush. For each colour, find the probability that you
buy a toothbrush of that colour.

(b) James and Simon share a flat, so it would be confusing if their toothbrushes
were the same colour. On the first day of term they both go to the shop to
buy a toothbrush. For each of James and Simon, the probability of buying
various colours of toothbrush is as calculated in (a), and their choices are
independent. Find the probability that they buy toothbrushes of the same
colour.

(c) James and Simon live together for three terms. On the first day of each term
they buy new toothbrushes, with probabilities as in (b), independently of
what they had bought before. This is the only time that they change their
toothbrushes. Find the probablity that James and Simon have differently
coloured toothbrushes from each other for all three terms. Is it more likely
that they will have differently coloured toothbrushes from each other for
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1.13. WORKED EXAMPLES 21

all three terms or that they will sometimes have toothbrushes of the same
colour?

Solution

(a) Let R,B,G,P,W be the events that you buy a red, blue, green, purple and
white toothbrush respectively. Let x = P(G). We are given that

P(R) = 3x, P(B) = 2x, P(P) = P(W ) = x.

Since these outcomes comprise the whole sample space, Corollary 2 gives

3x+2x+ x+ x+ x = 1,

so x = 1/8. Thus, the probabilities are 3/8, 1/4, 1/8, 1/8, 1/8 respectively.

(b) Let RB denote the event ‘James buys a red toothbrush and Simon buys a blue
toothbrush’, etc. By independence (given), we have, for example,

P(RR) = (3/8) · (3/8) = 9/64.

The event that the toothbrushes have the same colour consists of the five
outcomes RR, BB, GG, PP, WW , so its probability is

P(RR)+P(BB)+P(GG)+P(PP)+P(WW )

=
9
64

+
1
16

+
1
64

+
1
64

+
1
64

=
1
4
.

(c) The event ‘different coloured toothbrushes in the ith term’ has probability 3/4
(from part (b)), and these events are independent. So the event ‘different
coloured toothbrushes in all three terms’ has probability

3
4
· 3

4
· 3

4
=

27
64

.

The event ‘same coloured toothbrushes in at least one term’ is the comple-
ment of the above, so has probability 1− (27/64) = (37)/(64). So it is
more likely that they will have the same colour in at least one term.

Question There are 24 elephants in a game reserve. The warden tags six of the
elephants with small radio transmitters and returns them to the reserve. The next
month, he randomly selects five elephants from the reserve. He counts how many
of these elephants are tagged. Assume that no elephants leave or enter the reserve,
or die or give birth, between the tagging and the selection; and that all outcomes
of the selection are equally likely. Find the probability that exactly two of the
selected elephants are tagged, giving the answer correct to 3 decimal places.
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22 CHAPTER 1. BASIC IDEAS

Solution The experiment consists of picking the five elephants, not the original
choice of six elephants for tagging. Let S be the sample space. Then |S |= 24C5.

Let A be the event that two of the selected elephants are tagged. This involves
choosing two of the six tagged elephants and three of the eighteen untagged ones,
so |A|= 6C2 · 18C3. Thus

P(A) =
6C2 · 18C3

24C5
= 0.288

to 3 d.p.

Note: Should the sample should be ordered or unordered? Since the answer
doesn’t depend on the order in which the elephants are caught, an unordered sam-
ple is preferable. If you want to use an ordered sample, the calculation is

P(A) =
6P2 · 18P3 · 5C2

24P5
= 0.288,

since it is necessary to multiply by the 5C2 possible patterns of tagged and un-
tagged elephants in a sample of five with two tagged.

Question A couple are planning to have a family. They decide to stop having
children either when they have two boys or when they have four children. Sup-
pose that they are successful in their plan.

(a) Write down the sample space.

(b) Assume that, each time that they have a child, the probability that it is a
boy is 1/2, independent of all other times. Find P(E) and P(F) where
E = “there are at least two girls”, F = “there are more girls than boys”.

Solution (a) S = {BB,BGB,GBB,BGGB,GBGB,GGBB,BGGG,GBGG,
GGBG,GGGB,GGGG}.

(b) E = {BGGB,GBGB,GGBB,BGGG,GBGG,GGBG,GGGB,GGGG},
F = {BGGG,GBGG,GGBG,GGGB,GGGG}.

Now we have P(BB) = 1/4, P(BGB) = 1/8, P(BGGB) = 1/16, and similarly
for the other outcomes. So P(E) = 8/16 = 1/2, P(F) = 5/16.
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2.5. BAYES’ THEOREM 29

By the Theorem of Total Probability,

P(B) = P(B | A1)P(A1)+P(B | A2)P(A2)+P(B | A3)P(A3)
= (1/3)× (1/2)+(2/3)× (1/4)+(2/3)× (1/4)
= 1/2.

We have reached by a roundabout argument a conclusion which you might
think to be obvious. If we have no information about the first pen, then the second
pen is equally likely to be any one of the four, and the probability should be 1/2,
just as for the first pen. This argument happens to be correct. But, until your
ability to distinguish between correct arguments and plausible-looking false ones
is very well developed, you may be safer to stick to the calculation that we did.
Beware of obvious-looking arguments in probability! Many clever people have
been caught out.

2.5 Bayes’ Theorem
There is a very big difference between P(A | B) and P(B | A).

Suppose that a new test is developed to identify people who are liable to suffer
from some genetic disease in later life. Of course, no test is perfect; there will be
some carriers of the defective gene who test negative, and some non-carriers who
test positive. So, for example, let A be the event ‘the patient is a carrier’, and B
the event ‘the test result is positive’.

The scientists who develop the test are concerned with the probabilities that
the test result is wrong, that is, with P(B | A′) and P(B′ | A). However, a patient
who has taken the test has different concerns. If I tested positive, what is the
chance that I have the disease? If I tested negative, how sure can I be that I am not
a carrier? In other words, P(A | B) and P(A′ | B′).

These conditional probabilities are related by Bayes’ Theorem:

Theorem 2.4 Let A and B be events with non-zero probability. Then

P(A | B) =
P(B | A) ·P(A)

P(B)
.

The proof is not hard. We have

P(A | B) ·P(B) = P(A∩B) = P(B | A) ·P(A),

using the definition of conditional probability twice. (Note that we need both A
and B to have non-zero probability here.) Now divide this equation by P(B) to get
the result.
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30 CHAPTER 2. CONDITIONAL PROBABILITY

If P(A) 6= 0,1 and P(B) 6= 0, then we can use Corollary 17 to write this as

P(A | B) =
P(B | A) ·P(A)

P(B | A) ·P(A)+P(B | A′) ·P(A′)
.

Bayes’ Theorem is often stated in this form.

Example Consider the ice-cream salesman from Section 2.3. Given that he sold
all his stock of ice-cream, what is the probability that the weather was sunny?
(This question might be asked by the warehouse manager who doesn’t know what
the weather was actually like.) Using the same notation that we used before, A1
is the event ‘it is sunny’ and B the event ‘the salesman sells all his stock’. We are
asked for P(A1 | B). We were given that P(B | A1) = 0.9 and that P(A1) = 0.3, and
we calculated that P(B) = 0.59. So by Bayes’ Theorem,

P(A1 | B) =
P(B | A1)P(A1)

P(B)
=

0.9×0.3
0.59

= 0.46

to 2 d.p.

Example Consider the clinical test described at the start of this section. Suppose
that 1 in 1000 of the population is a carrier of the disease. Suppose also that the
probability that a carrier tests negative is 1%, while the probability that a non-
carrier tests positive is 5%. (A test achieving these values would be regarded as
very successful.) Let A be the event ‘the patient is a carrier’, and B the event ‘the
test result is positive’. We are given that P(A) = 0.001 (so that P(A′) = 0.999),
and that

P(B | A) = 0.99, P(B | A′) = 0.05.

(a) A patient has just had a positive test result. What is the probability that the
patient is a carrier? The answer is

P(A | B) =
P(B | A)P(A)

P(B | A)P(A)+P(B | A′)P(A′)

=
0.99×0.001

(0.99×0.001)+(0.05×0.999)

=
0.00099
0.05094

= 0.0194.

(b) A patient has just had a negative test result. What is the probability that the
patient is a carrier? The answer is

P(A | B′) =
P(B′ | A)P(A)

P(B′ | A)P(A)+P(B′ | A′)P(A′)
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36 CHAPTER 2. CONDITIONAL PROBABILITY

=
1
4
· P(S1∩S2)

P(S2)
· P(H1∩H2)

P(H2)

=
1
4
·P(S1 | S2) ·P(H1 | H2)

=
1
4
· 2

3
· 2

51

=
1

153
.

I thank Eduardo Mendes for pointing out a mistake in my previous solution to
this problem.

Question The Land of Nod lies in the monsoon zone, and has just two seasons,
Wet and Dry. The Wet season lasts for 1/3 of the year, and the Dry season for 2/3
of the year. During the Wet season, the probability that it is raining is 3/4; during
the Dry season, the probability that it is raining is 1/6.

(a) I visit the capital city, Oneirabad, on a random day of the year. What is the
probability that it is raining when I arrive?

(b) I visit Oneirabad on a random day, and it is raining when I arrive. Given this
information, what is the probability that my visit is during the Wet season?

(c) I visit Oneirabad on a random day, and it is raining when I arrive. Given this
information, what is the probability that it will be raining when I return to
Oneirabad in a year’s time?

(You may assume that in a year’s time the season will be the same as today but,
given the season, whether or not it is raining is independent of today’s weather.)

Solution (a) Let W be the event ‘it is the wet season’, D the event ‘it is the dry
season’, and R the event ‘it is raining when I arrive’. We are given that P(W ) =
1/3, P(D) = 2/3, P(R |W ) = 3/4, P(R | D) = 1/6. By the ToTP,

P(R) = P(R |W )P(W )+P(R | D)P(D)
= (3/4) · (1/3)+(1/6) · (2/3) = 13/36.

(b) By Bayes’ Theorem,

P(W | R) =
P(R |W )P(W )

P(R)
=

(3/4) · (1/3)
13/36

=
9
13

.
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3.5. SOME DISCRETE RANDOM VARIABLES 49

Binomial random variable Bin(n, p)

Remember that for a Bernoulli random variable, we describe the event X = 1 as a
‘success’. Now a binomial random variable counts the number of successes in n
independent trials each associated with a Bernoulli(p) random variable.

For example, suppose that we have a biased coin for which the probability of
heads is p. We toss the coin n times and count the number of heads obtained. This
number is a Bin(n, p) random variable.

A Bin(n, p) random variable X takes the values 0,1,2, . . . ,n, and the p.m.f. of
X is given by

P(X = k) = nCkqn−k pk

for k = 0,1,2, . . . ,n, where q = 1− p. This is because there are nCk different ways
of obtaining k heads in a sequence of n throws (the number of choices of the k
positions in which the heads occur), and the probability of getting k heads and
n− k tails in a particular order is qn−k pk.

Note that we have given a formula rather than a table here. For small values
we could tabulate the results; for example, for Bin(4, p):

k 0 1 2 3 4

P(X = k) q4 4q3 p 6q2 p2 4qp3 p4

Note: when we add up all the probabilities in the table, we get
n

∑
k=0

nCkqn−k pk = (q+ p)n = 1,

as it should be: here we used the binomial theorem

(x+ y)n =
n

∑
k=0

nCkxn−kyk.

(This argument explains the name of the binomial random variable!)
If X ∼ Bin(n, p), then

E(X) = np, Var(X) = npq.

There are two ways to prove this, an easy way and a harder way. The easy way
only works for the binomial, but the harder way is useful for many random vari-
ables. However, you can skip it if you wish: I have set it in smaller type for this
reason.

Here is the easy method. We have a coin with probability p of coming down
heads, and we toss it n times and count the number X of heads. Then X is our
Bin(n, p) random variable. Let Xk be the random variable defined by

Xk =
{

1 if we get heads on the kth toss,
0 if we get tails on the kth toss.
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50 CHAPTER 3. RANDOM VARIABLES

In other words, Xi is the indicator variable of the event ‘heads on the kth toss’.
Now we have

X = X1 +X2 + · · ·+Xn

(can you see why?), and X1, . . . ,Xn are independent Bernoulli(p) random variables
(since they are defined by different tosses of a coin). So, as we saw earlier, E(Xi) =
p, Var(Xi) = pq. Then, by Theorem 21, since the variables are independent, we
have

E(X) = p+ p+ · · ·+ p = np,

Var(X) = pq+ pq+ · · ·+ pq = npq.

The other method uses a gadget called the probability generating function. We only use it
here for calculating expected values and variances, but if you learn more probability theory you
will see other uses for it. Let X be a random variable whose values are non-negative integers. (We
don’t insist that it takes all possible values; this method is fine for the binomial Bin(n, p), which
takes values between 0 and n. To save space, we write pk for the probability P(X = k). Now the
probability generating function of X is the power series

GX (x) = ∑ pkxk.

(The sum is over all values k taken by X .)
We use the notation [F(x)]x=1 for the result of substituting x = 1 in the series F(x).

Proposition 3.4 Let GX (x) be the probability generating function of a random variable X. Then

(a) [GX (x)]x=1 = 1;

(b) E(X) =
[ d

dx GX (x)
]

x=1;

(c) Var(X) =
[

d2

dx2 GX (x)
]

x=1
+E(X)−E(X)2.

Part (a) is just the statement that probabilities add up to 1: when we substitute x = 1 in the
power series for GX (x) we just get ∑ pk.

For part (b), when we differentiate the series term-by-term (you will learn later in Analysis
that this is OK), we get

d
dx

GX (x) = ∑kpkxk−1.

Now putting x = 1 in this series we get

∑kpk = E(X).

For part (c), differentiating twice gives

d2

dx2 GX (x) = ∑k(k−1)pkxk−2.

Now putting x = 1 in this series we get

∑k(k−1)pk = ∑k2 pk−∑kpk = E(X2)−E(X).

Adding E(X) and subtracting E(X)2 gives E(X2)−E(X)2, which by definition is Var(X).
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52 CHAPTER 3. RANDOM VARIABLES

red balls in the sample. Such an X is called a hypergeometric random variable
Hg(n,M,N).

The random variable X can take any of the values 0,1,2, . . . ,n. Its p.m.f. is
given by the formula

P(X = k) =
MCk ·N−MCn−k

NCn
.

For the number of samples of n balls from N is NCn; the number of ways of
choosing k of the M red balls and n−k of the N−M others is MCk ·N−MCn−k; and
all choices are equally likely.

The expected value and variance of a hypergeometric random variable are as
follows (we won’t go into the proofs):

E(X) = n
(

M
N

)
, Var(X) = n

(
M
N

)(
N−M

N

)(
N−n
N−1

)
.

You should compare these to the values for a binomial random variable. If we
let p = M/N be the proportion of red balls in the hat, then E(X) = np, and Var(X)
is equal to npq multiplied by a ‘correction factor’ (N−n)/(N−1).

In particular, if the numbers M and N −M of red and non-red balls in the
hat are both very large compared to the size n of the sample, then the difference
between sampling with and without replacement is very small, and indeed the
‘correction factor’ is close to 1. So we can say that Hg(n,M,N) is approximately
Bin(n,M/N) if n is small compared to M and N−M.

Consider our example of choosing two pens from four, where two pens are
red, one green, and one blue. The number X of red pens is a Hg(2,2,4) random
variable. We calculated earlier that P(X = 0) = 1/6, P(X = 1) = 2/3 and P(X =
2) = 1/6. From this we find by direct calculation that E(X) = 1 and Var(X) = 1/3.
These agree with the formulae above.

Geometric random variable Geom(p)

The geometric random variable is like the binomial but with a different stopping
rule. We have again a coin whose probability of heads is p. Now, instead of
tossing it a fixed number of times and counting the heads, we toss it until it comes
down heads for the first time, and count the number of times we have tossed
the coin. Thus, the values of the variable are the positive integers 1, ,2,3, . . . (In
theory we might never get a head and toss the coin infinitely often, but if p > 0
this possibility is ‘infinitely unlikely’, i.e. has probability zero, as we will see.)
We always assume that 0 < p < 1.

More generally, the number of independent Bernoulli trials required until the
first success is obtained is a geometric random variable.
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3.5. SOME DISCRETE RANDOM VARIABLES 53

The p.m.f of a Geom(p) random variable is given by

P(X = k) = qk−1 p,

where q = 1− p. For the event X = k means that we get tails on the first k− 1
tosses and heads on the kth, and this event has probability qk−1 p, since ‘tails’ has
probability q and different tosses are independent.

Let’s add up these probabilities:

∞

∑
k=1

qk−1 p = p+qp+q2 p+ · · ·= p
1−q

= 1,

since the series is a geometric progression with first term p and common ratio
q, where q < 1. (Just as the binomial theorem shows that probabilities sum to 1
for a binomial random variable, and gives its name to the random variable, so the
geometric progression does for the geometric random variable.)

We calculate the expected value and the variance using the probability gener-
ating function. If X ∼ Geom(p), the result will be that

E(X) = 1/p, Var(X) = q/p2.

We have

GX (x) =
∞

∑
k=1

qk−1 pxk =
px

1−qx
,

again by summing a geometric progression. Differentiating, we get

d
dx

GX (x) =
(1−qx)p+ pxq

(1−qx)2 =
p

(1−qx)2 .

Putting x = 1, we obtain

E(X) =
p

(1−q)2 =
1
p
.

Differentiating again gives 2pq/(1−qx)3, so

Var(X) =
2pq
p3 +

1
p
− 1

p2 =
q
p2 .

For example, if we toss a fair coin until heads is obtained, the expected number
of tosses until the first head is 2 (so the expected number of tails is 1); and the
variance of this number is also 2.
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4.4. TRANSFORMATION OF RANDOM VARIABLES 75

for 0 ≤ y ≤ 2; of course FY (y) = 0 for y < 0 and FY (y) = 1 for y > 2. (Note that
Y ≤ y if and only if X ≤ y2, since Y =

√
X .)

(c) We have

fY (y) =
d
dy

FY (y) =
{

y/2 if 0 ≤ y ≤ 2,
0 otherwise.

The argument in (b) is the key. If we know Y as a function of X , say Y = g(X),
where g is an increasing function, then the event Y ≤ y is the same as the event
X ≤ h(Y ), where h is the inverse function of g. This means that y = g(x) if and
only if x = h(y). (In our example, g(x) =

√
x, and so h(y) = y2.) Thus

FY (y) = FX(h(y)),

and so, by the Chain Rule,

fY (y) = fX(h(y))h′(y),

where h′ is the derivative of h. (This is because fX(x) is the derivative of FX(x)
with respect to its argument x, and the Chain Rule says that if x = h(y) we must
multiply by h′(y) to find the derivative with respect to y.)

Applying this formula in our example we have

fY (y) =
1
4
·2y =

y
2

for 0 ≤ y ≤ 2, since the p.d.f. of X is fX(x) = 1/4 for 0 ≤ x ≤ 4.
Here is a formal statement of the result.

Theorem 4.5 Let X be a continuous random variable. Let g be a real function
which is either strictly increasing or strictly decreasing on the support of X, and
which is differentiable there. Let Y = g(X). Then

(a) the support of Y is the image of the support of X under g;

(b) the p.d.f. of Y is given by fY (y) = fX(h(y))|h′(y)|, where h is the inverse
function of g.

For example, here is the proof of Proposition 3.6: if X ∼ N(µ,σ2) and Y =
(X −µ)/σ, then Y ∼ N(0,1). Recall that

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

.
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4.5. WORKED EXAMPLES 77

Note the 2 in the line labelled “by the Chain Rule”. If you blindly applied
the formula of Theorem 4.5, using h(y) =

√
y, you would not get this 2; it arises

from the fact that, since Y = X2, each value of Y corresponds to two values of X
(one positive, one negative), and each value gives the same contribution, by the
symmetry of the p.d.f. of X .

4.5 Worked examples
Question Two numbers X and Y are chosen independently from the uniform
distribution on the unit interval [0,1]. Let Z be the maximum of the two numbers.
Find the p.d.f. of Z, and hence find its expected value, variance and median.

Solution The c.d.f.s of X and Y are identical, that is,

FX(x) = FY (x) =

{0 if x < 0,
x if 0 < x < 1,
1 if x > 1.

(The variable can be called x in both cases; its name doesn’t matter.)
The key to the argument is to notice that

Z = max(X ,Y )≤ x if and only if X ≤ x and Y ≤ x.

(For, if both X and Y are smaller than a given value x, then so is their maximum;
but if at least one of them is greater than x, then again so is their maximum.) For
0 ≤ x ≤ 1, we have P(X ≤ x) = P(Y ≤ x) = x; by independence,

P(X ≤ x and Y ≤ x) = x · x = x2.

Thus P(Z ≤ x) = x2. Of course this probability is 0 if x < 0 and is 1 if x > 1. So
the c.d.f. of Z is

FZ(x) =

{0 if x < 0,
x2 if 0 < x < 1,
1 if x > 1.

The median of Z is the value of m such that FZ(m) = 1/2, that is m2 = 1/2, or
m = 1/

√
2.

We obtain the p.d.f. of Z by differentiating:

fZ(x) =
{2x if 0 < x < 1,

0 otherwise.

Then we can find E(Z) and Var(Z) in the usual way:

E(Z) =
Z 1

0
2x2dx =

2
3
, Var(Z) =

Z 1

0
2x3dx−

(
2
3

)2

=
1
18

.

Preview from Notesale.co.uk

Page 85 of 94



Appendix A

Mathematical notation

The Greek alphabet

Mathematicians use the Greek alpha-
bet for an extra supply of symbols.
Some, like π, have standard meanings.
You don’t need to learn this; keep it
for reference. Apologies to Greek stu-
dents: you may not recognise this, but
it is the Greek alphabet that mathe-
maticians use!
Pairs that are often confused are zeta
and xi, or nu and upsilon, which look
alike; and chi and xi, or epsilon and
upsilon, which sound alike.

Name Capital Lowercase
alpha A α

beta B β

gamma Γ γ

delta ∆ δ

epsilon E ε

zeta Z ζ

eta H η

theta Θ θ

iota I ι

kappa K κ

lambda Λ λ

mu M µ
nu N ν

xi Ξ ξ

omicron O o
pi Π π

rho P ρ

sigma Σ σ

tau T τ

upsilon ϒ υ

phi Φ φ

chi X χ

psi Ψ ψ

omega Ω ω

79
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