- Hydrophilic parts- edge of the polypeptide- close to water
- interactions cause twisting of the amino acid chain, changing the shape of the protein.

Proteins 3: Fibrous and Globular proteins

Fibrous: long regular, repetitive sequence of aa, usually insoluble in water & metabolically inactive

These features enable them to form fibres, structural function.

Properties + functions of fibrous proteins

- 1. **Collagen:** provides mechanical strength like Artery walls & Tendons (bone &muscle)
- 2. Elastin: cross-linking + coiling makes structure strong + extensible like skin- stretch & lungsinflate
- 3. Keratin: rich in cysteine- disulfide + hydrogen bonds- strong like Finger nails, hair, claws

Globular: relatively spherical shape, soluble (phobic + philic interactions, causing philic R groups- on the outside), and metabolic roles within organism

specific shapes- allowing them to take up roles as enzymes, hormones and haemoglobin.

Properties + functions of globular proteins

- Haemoglobin: 4 polypeptide chains- 2 α-glucose + 2 β-glucose CO-UK
 Each chain has its own tertiary structure- fit togethered CO-UK
 Each chain- baom and the structure fit togethered CO-UK
- Each chain- haem group- prosthetic group () on plotein)-iron ion
- A protein associated with this kind group is called a conjugated protein

- haemoglobin- reaches the tissues. Function-oxygen_b

2. **Insulin**: 2 polypeptide chails- increase rate of consumption

3. **Pepsin:** enzyme- digests protein in stomach- single polypeptide chain

Computer modelling: predicts shape of a protein molecule from its primary structure

- Scans amino acid against database of possible match sequence
- _ useful for investigating the different levels of structure in a protein molecule.

Anaphase 2:

- Centromeres divide •
- Chromatids of each chromosome pulled apart by motor proteins, dragged along tubulin threads of spindle, towards opposite poles

Telophase 2:

- Nuclear envelope forms around each of the 4 haploid nuclei
- 2 cells divide into 4 haploid

How meiosis produces genetic variation:

- Non sister chromatids cross over in prophase 1- shuffles alleles
- Random arrangement of chromosomes in anaphase 1- random distribution of maternal and paternal chromosomes of each pair
- Random arrangement of chromosomes in anaphase 2- further random distribution of genetic material
- Haploid gametes produced, undergo random fusion with gametes from another organism (same species)

Diversity in animals and plants

Multicellular organisms are large compared to single-celled, and thus have smaller SA/V ratio, so co.u cells are not in direct contact with external environment

R Stem cell: unspecialized cell able to express all of its genes and

Differentiation: stem cells becoming specialized

- Some genes switched off card out ry expressed more
- Proportion of organilles change
- Shape of e
- ntents of cell changes

Erythrocytes(RBC):

- high SA/V ratio-biconcave shape, O2 diffuses across membrane easily
- flexible, well developed cytoskeleton to change shape- twist and turn though narrow capillaries
- lack in organelles like nucleus, mitochondria, R/SER- more space for hemoglobin

Neutrophils(WBC):

- Twice size of erythrocytes
- Multilobed nucleus
- Attracted to and travel toward infection sites
- Ingest bacteria and some fungi by phagocytosis

Sperm cells:

- Lots of mitochondria- ATP energy for undulipodium (tail) to move towards the ovum •
- Small, long and thing-move easily
- Sperms head has digestive enzymes to enter ovum
- Contain haploid male gamete

Xylem and phloem in the leaf

- Vascular bundles form the **midrib & veins** leaf
- **Dicotyledonous** leaf- branching network of veinssmaller as they spread away from **midrib**
- vein- xylem is located ontop of the phloem

Figure 4 Transverse section of leaf, showing a tissue plan.

3.3.2 <u>Transport tissues</u>

Xylem - Tissue- transporting water & mineral ions from roots up to leaves & rest of plants

- Vessels- carry water & dissolved mineral ions
- Fibres- help support the plant
- Living parenchyma cells- act as packing tissue to separate & support the vessels

Xylem vessels

- As they develop- lignin impregnates- walls of the cells- waterproof- kills the cells
- The end walls & contents of the cells decay- leaving a long column of dead cells- no contents-a tube called the xylem vessel
- Lignin strengthens vessel walls & prevents collapsing keeps vessels open even with water- short supply
- Lignin thickening forms patterns in the cell wall-spiral covid a (mgs) or reticulate (a network of broken rings)- prevents the vase (t) or grd & allows some flexibility of the stem/branch
- In some places- lignification incomplete- learning g p in cen wall
- gaps form riss or burdered pits- two edjacent vessels aligned- allow water to leave one
 ws ere pass into next one
- allow water to leave the xylem & pass into living parts of the plant

Adaptations of xylem to its function

Xylem vessels can carry water & mineral ions from the root- very top ofplant because:

- Made from **dead cells aligned** end to end- a **continuous column**
- Tubes- narrow so water column does not break easily & capillary action- effective
- Bordered pits- lignified walls allow water move sideways from one vessel to another
- Lignin deposited in the walls in spiral, annular/ reticulate patterns allow xylem to stretch as the plant grows & enables stem or branch to bend

Flow of water is not delayed because:

- 1. no cross-walls
- 2. no cell contents, nucleus or cytoplasm
- 3. Lignin thickening prevents the walls- collapsing

wall of a xyle vessel

Figure 1 Transverse section of xylem, with high-power drawing

Figure 2 Xylem in longitudinal section, showing spiral thickening.

Direct transmission: passing a pathogen from host to new host with no intermediary

- 1. Direct physical contact- touching infect person/ contaminated surface
 - ✓ Hygiene- washing hands regularly- after toilet, disinfecting cuts, condoms
- 2. Faecal- oral transmission- eating/ drinking things -contaminated by pathogen ✓ Wash fresh food, treatment of water- purifying & cleaning
- 3. Droplet infection-tiny water droplet in air- carry pathogen
 - \checkmark Cover your mouth-sneeze & cough use tissue and dispose correctly
- 4. Transmission by spores- air or soil
 - ✓ Use mask & wash skin after soil contact
- Overcrowding- many living and sleeping together
- **Poor ventilation**
- Poor health & poor diet- person having disease- spread easily

Transmission of plant pathogen

- Pathogens in soil- enter roots (especially if damaged by animals or storm)
- Fungi produce spores- reproduction- airborne transmission via wind
- Enters plant- affects vascular tissue
- Leaves shed- carry's pathogen back into soil •
- Also enter fruit seeds and infect offspring's
- Indirect- spores/bacteria attached to burrowing insects- when attacking infect plant
- Insect can attack healthy plant- infecting it

Plant defenses against pathogens

.co.uk chemical barriers Passive defenses- before infection- prevents entry of

Physical defenses:

1. Callose- large polysacoarie ve t blocks flow- prevents at is deposited in **si** pathogen spread

- Tylese tern ation- a balloon-like seelling projection that fill xylem vessel- blocks vessel e entropy pathogen spreze and contration of chemical-terpenes-toxic to pathogen 3. Waxy cuticle- prevents water collection on surface- pathogen needs water- survive
- 4. Cellulose cell wall- physical barrier & activate chemical defenses- pathogen detected
- 5. Stomatal closure- guard cells close stomata- pathogen detected
- 6. Lignin thickening of cell walls- waterproof and indigestible
- 7. Bark- chemical defenses

Chemical defenses: terpenoids, phenols, alkaloids, defense proteins, hydrolytic enzymes

Necrosis- deliberate cell suicide- cells die around infection- prevent spread

Primary defenses against disease

- 1. Skin- Physical barrier- layer of dead cells
- 2. Mucous membrane- special epithelial tissues covered by mucus- protects body openings exposed to environment- mouth, ears, anus, genitals, nostrils. Goblet cells- (glands) secretes mucus traps pathogens - cilia- tiny hair organelle- waft layer of mucus
- 3. Coughing and sneezing- response to irritation- microorganism/ toxins release- reflex sudden explosion of air to expel foreign matter

- Many characteristics can be affected by the environment
- skin colour in different light intensities
- Hawthorn trees grow branches sideways in windy conditions

'Genes load the gun; environment pulls trigger'

- changes in environment directly affects genes that are active
- small height family- even with good diet- unlikely to be tall- genes limits your height

Applying statistical techniques:

Standard deviation: measure of the spread around mean

- Iow st.dev- data has a narrow range- closely grouped to means- more reliable
- high ts.dev- data has a larger range- less well grouped- less reliable

x= individual value x(dash)= mean value n= number of data points s(st. dev)= +/- the mean value

normal distribution: values within +/- standard deviation

EG: mean= 84.6 s= +/- 8.98 OR 75.62/93.58 normal distribution is 75.63-93.57 Anything outside normal distribution is viewed as anomalous e.co.

Student's t-test: test used to compare 2 means

- makes sure no significant difference betw
- t-test: sees whether to re p hypothesis

S1^2- standard dev er of data points in first set of data **T value** 5% its significant and is here for rejected

Correlation coefficient

Correlation coefficient: measure of how closely 2 sets of data are correlated. Value of 1- perfect correlation

D= difference between ranks N= number of pairs of value(ranks)

- Use critical values to see if rs indicates a correlation
- ➢ Rs< critical value − no correlation (negative correlation)</p>
- Rs> critical value- positive correlation (closer to 1)

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

- If any insects have resistance they survive
- The survivors are the only individuals that can breed
- All offspring have resistance to the pesticide
- Resistance spreads through the population quickly

Insects eat crops, carry diseases- vector, bioaccumulation of pesticide build up in food chainhumans can receive large doses of insecticides

Micro-organisms

- Antibiotics are a strong selective pressure on microorganisms
- Any susceptible microorganisms will die
- If any microorganisms have resistance they survive
- The survivors are the only individuals that can breed
- All offspring have resistance to the antibiotic
- **Resistance spreads** through the **population quickly To reduce antibiotic resistance:**
 - ✓ Always complete the course of antibiotics
 - ✓ Only take antibiotics when necessary (Not for viral infections)

Problems with antibiotic resistance:

- MRSA 'superbug' has developed resistance to an ever increasing range of stronger and stronger antibiotics.
- This is an evolutionary arms race and medical researchers are struggling to develop new effective drugs, but the bacteria are rapidly becoming resistant.
 NoteSale.Co.uk
 from 55 of 87
 preview page

Mammalian Nervous system

1.CNS

- spinal cord and brain
- White matter- myelinated (outer region of spinal c), grey matter- non myelinated (central)
- spinal protected by vertebral column- between each vertebrate- action p enter/exit

2.PNS

Sensory NS- carry action p from sensory receptor- Dendrons of sensory fibres enter CNS

Motor-Somatic NS

- single motor neurone carry action p from CNS to effector- skeletal muscles-
- voluntary conscious control
- myelinated neurones- rapid response

Motor-Autonomic NS

- at least 2 neurones carry action p from CNS to effectors- cardiac/smooth muscles of blood vessel walls/ airways& wall of oesophagus
- non myelinated neurones connected at ganglia
- involuntary/unconscious- responsible for homeostatic mechanisms
- •
- Parasympathetic- conserves energy antagonistic systems- action of one opposes other change to internal condition- stress- changes paratic of stimulation between 2 systems-leads to a key response •

Sympathetic	Parasymap the tic
Noradienaline	Acetylcholine
Short pre-ganglionic neurone	Long-variable- depends- position of effector
Long-variable- depends- position of effector	Short post-ganglionic neurone
Active- times of stress	Active- sleep/relaxed
Nerves lead to separate effector	Nerves divide up and lead to diff effectors
Orgasm	Sexual arousal
Heart rate increase	oppisite
Saliva production inhibited	
Pupil dilates	

Cerebrum

- 2 cerebral hemisphere- connected by corpus callosum
- Outermost layer- cerebral cortex
- conscious thought/action/ emotional response/ memory/ judgement

Cerebral cortex

- Association areas- compare sensory inputs with past experience- give appropriate response
- Motor areas of left side controls effectors on right side of body
- size of motor area allocated to certain effectors- relates to complexity of movement

- Smaller fragments travel further- fragments sorted by length
- nucleotide base at end of fragment read according to its radioactive label
- time consuming and costly process
- 2. 1st DNA sequencing machine
- automated- based on Sanger's method- fluorescent dyes used for terminal bases instead •
- need of technicians to read autoradiograms
- 3. High throughout sequencing- pyrosequencing- synthesing
- 1. a long DNA to be sequenced cut by nebuliser 300-800 bps
- 2. lengths degraded into single stranded DNA (ssDNA)- template strands- immobilised
- 3. Sequencing primer, DNA, DNA polymerase, ATP sulfurylase, luciferase
- 4. 1 out of 4 nucleotides A/C/T/GTP is added at any ne time+ light generated is detected
- 5. GTP- dephosphorylates to Guanine (all bases)
- 6. APS+ pyrophosphate- ATP and in the presence of ATP- luciferase converts luciferin to oxyluciferin
- 7. Light generated detected by camera- light patterns- indicate amount of ATP- DNA sequence
- 8. 10 hour run- 400 million bases read

Bioinformatics- research to store data generated

Against genetic screening of population- high cost to gov/NHS, invasion of privacy/ discriminates employer's/insurance companies/anxiety future health, many diseases have no treatment tesale.co

Applications:

- humans 99% of genes with chimpanzee
- FOXP2 gene in human, mice & chimpanze utated allows speech
- genetic similarities- track evolutionary relationships of specie •
- humans share 99.99 f DVA with each ot rer
- single public polymorphisms in/ the way RNA regulates expression of and the gene
- epigenetics- study of how methylation of certain chemical groups of DNA- regulating gene expression in eukaryotic cells
- Synthetic biology- design & build useful devices to store and process information, food production, biomedicine
- Epidemiology- study & analysis of the patterns, causes, effects of health & disease conditions

DNA profiling- DNA analysis- confirms identity of an individual

- DNA obtained from individual- mouth swab/blood/hair
- DNA cut by restriction enzymes- at specific recognition site- into fragments
- separated by gel electrophoresis & stained- smaller one's travel further •
- banding pattern seen & compared to another individual- cut with same restriction enzyme
- ٠ related individuals- more similar banding patterns

Types of DNA analysed

- Polymorphism analysis- Short tandem repeats- variable lengths- number of STRs varies from person to person
- STR sequences separated by electrophoresis
- DNA technique very sensitive- avoid contamination
- VNTR- variable no. tandem repeats- noncoding-varies in people- similarities=resemblance

- 4. Transfection- DNA inserted into bacteriophage- transfects host cell
- 5. Recombinant plasmid into Agrobacterium tumefaciens infects plants
- 6. Small piece if gold coated in DNA- shot into plant cells- gene gun

Grow in fermenter- multiply & reproduce- separate & reproduce

Bacteria & archaea- restriction enzymes- endonuclease (some need Mg ion-cofactor)

Prokaryotic DNA- protected by being methylated at recognition sites

Replica Plating

- 1. Human insulin gene is inserted- into tetracycline resistant gene in bacteria
- 2. Dip a block covered with sterile velvet into colonies on Ampicillin agar and touch onto surface of tetracycline
- 3. Recombinant plasmid will not grow therefore, missing ones have recombinant Plasmid in them
 - ✓ less rejection/side effect/reliable supply/ less ethical dilemmas/ faster

PCR	Genetic engineering (in vivo)
Quicker- few hours	Long- weeks- bacteria growth
Less equipment- tube & heat block	More- multirole test tubes/agar plates
Less space- regrowth medium, DNA & enzyme	More space- many plates- incubate / refrigerated
Safer- DNA & enzyme	Whole cells- contamination
More prone to mutation- Taq polymerase	Less prone
occasionally inserts wrong bases/ early mutation-	ntes.
reproduced	
PCR- primers- Taq p- high temp	Less exprnsi O material fro growing bacteria cheap
Limited size for cloning	energy in the second
Use lower quality DIA forensic	
- PIO - PA9-	

Knowledge of genes benefit medicine

- gene therapy
- see which individual's carries
- gene testing
- faster diagnosis
- embryo selection
- develop drugs- more effective & direct effect on organs

Genetically modified tech

Cloning and biotechnology

Natural clones

Cloning- process leads to formation of clones- genetically identical organisms/cells

Adv	Disadv
Same env suitable for parent & offspring	Offspring overcrowding
Rapid- increase pop- take adv of suitable env	No genetic diversity- all pop vulnerable to env
	changes
Reproduction- doesn't need 2 parents	Selection is impossible

Vegetative propagation- reproduction from vegetative parts of a plant- usually over wintering organ

- Runners/stolen- stems grow on surface of ground- can form roots at certain points (rhizomes- underground)
- suckers- new stems grow from root of plant
- Bulb- underground swollen stem- stores food & bud •
- Corms- same as bulb but solid •
- Leaves- immature plants drop off leaf- take root

water flea & greenfly- reproduce asexually to produce clones **Sale CO.UK**

Tissue culture- grow hgoe s/organs/plant cut from a sample plant

- section of root buried below surface- new shoots not cartin
- scion cutting- dormant wood cow
- leaf cutting- leaf placed in moist soil- develop new stems/roots
- Pluripotent/totipotent/undifferentiated- undiff cells give rise to many diff cell types ٠

Micropropagation:

- 1. Small piece of plant tissue- explant- often meristem- Virus infection free or small leaf
- 2. explant sterilised- dilute alcohol- kill bacteria/fungi- (they thrive in these conditions)
- 3. explant- sterile growth medium-agar- nutrient rich- gluc/aa/phosphates & high conc of growth hormone
- 4. stimulates cells to divide by mitosis- callus & divided to small clumps of undiff cells
- 5. placed in diff growth medium- 1. 100 auxins:1cytokinins- stimulate roots & 2. 4:1 stimulate shoots
- 6. tiny pantalets form- transferred to greenhouse- grown in compost/soil

Adv	Disadv
Rapid- shorter generation time	Tissue culture- labour intensive
Plants lost ability to breed sexually/ hard to grow	Expensive to set up facilities
from seeds	
Clones have desired characteristics- eg disease	Tissue culture fail- microbial contamination
resistance	

- Manipulation of energy transfer from producer to consumer
- Animals harvested young, when most of their energy is used for growth
- Steroid used to increase growth
- Selective breeding used to produce breeds with higher growth rates
- Animals treated with antibiotics to prevent loss of energy due to pathogens
- Limiting movement reduces energy loss due to heat, maximising the mass

Bacteria/fungi- saprotrophic decomposers

- secrete enzyme onto dead/waste material- digest into small mol.- absorbed into body- mol. stored/respired to release energy
- decomposers crucial- to recycle trapped nutrient in dead organisms

Bacteria- ammonification, nitrogen fixation, nitrification & denitrification

- Nitrogen fixation-plants need fixed N2- ammonium ions/ nitrate ions- occurs when lightening strike/ Haber process to make filter
- N2 fixing bacteria- Azotobacter live freely in soil & fix N2(g) in air within soil- manufacture aa
- Rhizobium- live inside root nodules- beans- provides plant with N2g and receive C compound- glucose mutualistic relationship
- Ammonification- bacteria- putrefaction of proteins in dead/waste organic matterchemoautotrophic bacteria- nitrosomonas- obtain energy by oxidising ammonium to nitrites
- Nitrification- Nitrobactor oxidising nitrites to nitrates
- oxidising needs oxygen so well aerated soils
- Nitrates absorbed by plants- make nucleotide bases & aa nucleic acids & proteins

Recycling within ecosystems

What determines population size?

Lag phase- few individuals acclimatising to their habitat- rate of reproduction and growth in pop. size small

Log phase- high resources/ good conditions- reproduction quicker as rate of rep> mortality- size increases guickly

Stationary phase- pop size levelled out to carry capacity (max pop size a habitat can be maintained esco.uk over a period in a specific habitat)- rate of rep= mortality- pop is stable

Limiting factor- factor whose magnitude slows down rate of a nature

Density dependent-factor influences population st Hore as population size increases

- (f o l) water/light/nesting 📍 availability of resources/oxygen es predation/parasites
- opulation Density independer elv of siz irrespectiv
 - 1 iduals in population irrespective of size same J

k- strategist- species whose population size determined by carrying capacity

- limiting factors exert and a more significant effect on pop. size reaching carrying capacitycauses pop. to level out
- birds/mammals/large plants- low reproduction rate/slow development/long lifespan/large body mass/ late reproductive age

r-strategist-species whose population size increases so quickly-exceeds carrying capacity of habitat before limiting factors start to effect size

- mice/spiders/weed- opposite
- Quick pop. growth-pioneer r- strategists colonise disturbed habitat before k- then disperses to other habitat when limiting factors have effect

Prev population

Predator population

Boom, peak above carrying capacity, bust

Interactions between populations

- 1. predator pop. increases- more prey eaten
- 2. prey pop. deceases- less food available for predators- less can survive- pop. size reduces
- 3. fewer predators- fewer prey eaten- pop. increases
- 4. with more prey- pred pop. can increases- cycle start again

- The goat has been one of the most damaging species- eats Galapagos rock purslane & outcompetes giant tortoise in grazing
- Cats hunt a number of species including the lava lizard & young iguanas
- The Charles Darwin Research Station has introduced many measures to prevent and limit this
- Quarantine systemo Culling of dominant alien specieso 36% of coastal areas designated as 'no take' zones
- It is essential to find a balance between the environmental, social and economic concerns

The Antarctic

- 1. Krill
 - food for whales, seals, penguins, squids
 - make nutritional supplements- animal feed
 - advancement in tech-large krill pop. areas are harvested
 - predators can't find krills elsewhere- over exploitation- catastrophic impact on predators
 - Thus, fishing conducted evenly across all areas- up to catch limit
- 2. Protected areas
 - International whaling commission- illegal to hunt & kill whales & monitoring whaling activity needs to be maintained- ensure preservation
 - current imitative to expand network of marine protected areas- Rees sta tesale.c biodiversity- attracts fish industry
- 3. Albotrosses and petrels
 - birds threatened by poaching unting projection, non-native predators for
 - long-line fishing-line (tt) oned with baited modes line behind boat- where birds swallow burds bird scaring & at next to avoid birds feeding time- to reduce bird

Lake Distri

Financial incentive for farmers to reduce chemical uses/take care for meadows/native woodland

Threat to biodiversity	Solution
Cliff &rock- support rich diversity of plant life-	Seasonal restriction- on walking when birds are
nesting site for golden eagle & falcon-	nesting
destroyed by climbers/walkers	Walkers- educated to be aware & footpaths
	well maintained
Mire- swampy ground- poor nutrients,	Mires managed more sympathetically-
waterlogged- lichens/mosses flourish- provides	rewetted with artificially controlled water
breeding ground for birds- under threat by	levels
burning/grazing/intensive agriculture	Areas- rare plants- grazing controlled
Coniferous plants support limited biodiversity	More varied planting & felling patterns- gives a
	mosaic if smaller stands- diff aged trees
Hay meadow- support rich diversity of	Farmers paid to maintain hay meadows
flowers/grasses- used for haymaking &silage	
production- uses artificial fertiliser & being cut-	
loss of species biodiversity	

Biuret reagent made of a mixture of copper sulphate and potassium or sodium hydroxide

Calorimeter

- The colorimeter shines a beam of light through the sample
- A photoelectric cell picks up the light that is passed through the sample (on the other side)
- provides a reading of the amount of light- passed through - transmitted or absorbed
- more copper sulphate (benedict reagent) used- less light will be blocked/absorbed- more transmitted.
- ٠ Digital reading gives a measure - amount reducing sugar in Benedict's reaction

Creating a calibration curve:

- Take series of concentrations of reducing sugar
- Benedict's test on each sample
- Use calorimeter to record % transmission of light through each sample
- % transmission (y-axis) and Glucose concentration (x-axis) (positive curve)

Use of biosensors:

- take samples difficult to measure- convert into electrical signal
- binding event- molecules enter receptor into- goes through a transducer surface
- generates an electrical signal into a signal conditioner
- calorimeter/biosensor- calibrated- need to know strength of electrical signal with known conc/value- can't interpret signal

paper chromatography

(after separation)

substance B had

two component

compounds

səlvent front

substance A had

three component compounds

- Chromatography
- Separates mixtures into its constituents
- Chromatography paper
- Solvent- water for polar md
- Draw pencil line antispot the m he pencil line ase
- eave for
- Remove and let it dry
- Also use thin-layer chromatography (TLC) plate.
- Use UV light-glows TLC plate except spots of mixture has travelled to.
- TLC plate very polar. Polar solutes stick to surface travel slower, non polar solutes travel quickly

Urine tests for athletes- illegal drugs

Distance moved by spot Rf =

Distance moved by solvent

Uv light, ninhydrin- binds to aa- visible brown spots. iodine crystals forms gas and binds to molecules- spot

10. Data logger

- ph changes effect of lipase in milk
- spirometer/ECG
- temp affects lipase- over time more fatty acids/glycerol produced from triglyceride- increase ph denature lipase- reaction stops