Suppose that the order of an element a in G is n and n is finite. Then we know that $a^n = e$, where e is the identity element in G. Multiply both sides (left or right) by the inverse of a^n which is $(a^{-1})^n$. Thus

$$a^n = e \Leftrightarrow (a^{-1})^n \cdot a^n = (a^{-1})^n \cdot e \Leftrightarrow e = (a^{-1})^n$$

Clearly, a^{-1} has the same order as element a and is also the inverse of a. Now, if the order of a happens to be infinite, then a^{-1} must also be of infinite order otherwise it would contradict what was just proven above.

3.14 If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G.

Suppose that H and K are both subgroups of G. Then by definition, both are non-empty and both contain the identity, e. Since, $e \in H$ and $e \in K$, then $e \in H \cap K$, which makes $H \cap K$ non-empty. Now, to prove that $H \cap K$ is a subgroup, by theorem 3.1, we show that when $a, b \in H \cap K$ then $ab^{-1} \in H \cap K$. So, let $a, b \in H \cap K$, which means $a, b \in H$ and $a, b \in K$. But we already know that H and K are subgroups, so we know that $ab^{-1} \in H$ and $ab^{-1} \in K$. Hence we have $ab^{-1} \in H \cap K$.

3.19 Prove theorem 3.6.

we have $av \in H \cap K$.

The theorem 3.6.

If C(a) = G, then we are done. So let the aspine that $C(a) \neq G$. Showing that $e \in C(a)$ is trivial, since $e \cdot c = C(a)$. Next, suppose that $b, c \in C(a)$. Then, (bc)a = b(ca) = b(ca)(bc)a = b(ca) = b(ca) = b(ca) = (ab)c = a(ba), which shows that $bc \in C(a)$. Now,

we take some $b \in C(a)$ and show that b = C also in C(a). So, $b \cdot a = b^{-1} \cdot a \cdot b$ multiply on left by inversions. multiply on left by inverse of b $a \cdot b^{-1} = b^{-1} \cdot a$ multiply on right by inverse of b

Thus $b^{-1} \in C(a)$ whenever b is.

3.27 Suppose a group contains elements a and b such that |a| = 4, |b| = 2, and $a^3b = ba$. Find |ab|.

$$e = ee = a^4b^2 = aa^3bb = a(a^3b)b = a(ba)b = (ab)(ab) = (ab)^2$$

First thing to note is that $|a| \neq |b|$, which means by Exercise 3.4 that one is not an inverse to the other. We get the second inequality from the order of a and b, then we use associativity, followed by the given equality, followed by more associativity, to conclude that |ab|=2.

3.28 Consider the elements $A=\begin{bmatrix}0&-1\\1&0\end{bmatrix}$ and $B=\begin{bmatrix}0&1\\-1&-1\end{bmatrix}$ from $SL(2,\mathbb{R})$. Find |A|, |B|, and |AB|. Does your answer surprise you?

The last equality comes from row 1:column 1 and row 2:column 2 both using (1), while row 1:column 2 and row 2:column 1 use (2).

Using the just proven formula, we can see that the order of

$$\begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ} \end{bmatrix}$$
 is going to be 6, since $\cos 360^{\circ} = 1$ and $\pm \sin 360^{\circ} = 0$. The order of

 $\frac{\cos(\sqrt{2})^{\circ}}{\sin(\sqrt{2})^{\circ}} - \frac{\sin(\sqrt{2})^{\circ}}{\cos(\sqrt{2})^{\circ}}$ is infinite because in order to get the identity matrix,

 $\bar{\theta}$ must equal $0,360^{\circ},720^{\circ},\ldots$, this is only possible if n were an irrational number, but since n is a positive integer then the identity can never be reached.

 $3.34\ U(15)$ has six cyclic subgroups. List them.

The six cyclic subgroups of U(15) are as follows:

- $\langle 2 \rangle = \{1, 2, 4, 8\}$
- $\langle 4 \rangle = \{1, 4\}$
- $\langle 8 \rangle = \{1, 8\}$
- $\langle 7 \rangle = \langle 13 \rangle = \{1, 7, 4, 13\}$

 $\langle 14 \rangle = \{1,14\}$ 3.44 Let $H = \{A \in GL(2,\mathbb{R}) \mid \det A \text{ is a power of Show that } H \text{ is a subgroup of } GL(2,\mathbb{R}).$

First, we check if the Centity is in H. Well, the determinant of the identity the determinant of B is \mathbb{Z}^n for some $k, n \in \mathbb{Z}$, so by Example 2.9 on page 45, $\det(AB) = \det(A) \cdot \det(B) = 2^k \cdot 2^n = 2^{k+n}$. Since k+n must be an integer, then the determinant of AB must be a power of 2 and we get that $AB \in H$. Lastly, we need to show that $A^{-1} \in H$ whenever $A \in H$ to satisfy Theorem 3.2. Clearly, for any $A \in GL(2,\mathbb{R})$ there exists an inverse, $A^{-1} \in GL(2,\mathbb{R})$ otherwise this would contradict $GL(2,\mathbb{R})$ being a group. So let $A \in H$ as well, then we know that $\det(AA^{-1}) = \det(A) \cdot \det(A^{-1}) = 2^k \cdot \det(A^{-1}) = e$, for some $k \in \mathbb{Z}$. Since this is true in $GL(2,\mathbb{R})$, then $\det(A^{-1})$ must be 2^{-k} , which is a power of 2 and hence $A^{-1} \in H$ as well.

3.45 Let H be a subgroup of \mathbb{R} under addition. Let $K = \{2^a \mid a \in H\}$. Prove that K is a subgroup of \mathbb{R}^* under multiplication.

> Firstly $0 \in H$ because H is a subgroup of \mathbb{R} with addition. Here we know that $2^0 = 1 \in K$. So K is nonempty. Now if $a, b \in K$, then $a = 2^k$ and $b = 2^n$ for some $k, n \in H$. Furthermore $ab = 2^k 2^n = 2^{k+n}$ and with $k, n \in H$ we know that $k+n \in H$ so $ab \in K$. Now if $c \in K$, then $\exists z \in H$ such that $c=2^z$. With $z \in H$, then $-z \in H$ because H is a group under addition. Thus $2^{-z} \in K$. Thus

We can say that $\langle a^3 \rangle \cap \langle a^2 \rangle = \langle a^{21} \rangle \cap \langle a^{10} \rangle$, by Theorem 4.2, since $\langle a^{21} \rangle = \langle a^{\gcd(24,21)} \rangle = \langle a^3 \rangle$ and $\langle a^{21} \rangle = \langle a^{\gcd(24,10)} \rangle = \langle a^2 \rangle$. So looking at some of the elements of $\langle a^3 \rangle = \{\ldots, a^3, a^6, a^9, \ldots\}$ and looking at some of the elements of $\langle a^2 \rangle = \{\ldots, a^2, a^4, a^6, \ldots\}$, we can see that $a^6 \in \langle a^3 \rangle \cap \langle a^2 \rangle$. Now, we can deduce that a^6 is actually a generator of $\langle a^3 \rangle \cap \langle a^2 \rangle$ since all elements of $\langle a^3 \rangle$ are some multiple of 3 while all elements of $\langle a^2 \rangle$ are multiples of 2 thereby making the all the elements in common multiples of 6 and $\langle a^6 \rangle = \langle a^{21} \rangle \cap \langle a^{10} \rangle$. Furthermore, 6 happens to be the lowest common multiple of 2 and 3, which leads us to a more general form, by the same argument as above, of finding the generator of some subgroup when |a| = d, $\langle a^m \rangle \cap \langle a^n \rangle = \langle a^{\gcd(m,d)} \rangle \cap \langle a^{\gcd(n,d)} \rangle$, by theorem 4.2, then $\langle a^s \rangle \cap \langle a^r \rangle = \langle a^t \rangle$, where $s = \gcd(m,d)$, $r = \gcd(n,d)$, and $t = \operatorname{lcm}(s,r)$.

- Any common multiple of 2 integers is divisible by the lcm of those 2 numbers. **Proof:** Let $m, n \in \mathbb{Z}$. Given any $c \in \mathbb{Z}$, c is a common multiple of m and n, we need to show $\operatorname{lcm}(m,n)|c$. So, let $d = \gcd(m,n)$. Then m = dm' and n = dn'. Given c, a common multiple of m and n, then $c = m \cdot k = dm' \cdot k$ and $c = n \cdot l = dn' \cdot l$. Immediately we see that d|c. We want to show that n'|k. If n' = 1 then the result follows. If not, then we know that the $\gcd(m',n') = 1$ (from our first hw. assignment), thus n' is the product of primes, rose n' which divide m'. But n'|(c/d) = m'k and n' does not divide m' with happines that n'|k. Thus $d \cdot m' \cdot n'|c$. With that fact, we see that n' = n' all common multiples of m and n. Moreover, $n' = m \cdot n' = n'$ so n' = n' so n' = n' a common multiple, so it is the n' = n' so n' = n
- 4.15 Let G be any certal group and let $H = \{g \in G \mid |g| \text{ divides } 12\}$. Prove that H is a ungraded of G. Is there are this special about 12 here? Would your proof be valid if M were replaced by some other positive integer? State the general result.

Let's prove the general result first. Let $H = \{g \in G : |g| \text{ divides } m\}$ where $m \in \mathbb{N}$. First we note that $e \in G$ and |e| = 1 and 1 divides any m, so that $e \in H$ and H is nonempty. Next, to show that $a \in H$ has an inverse in H, we know that $|a| = |a^{-1}|$ by Exercise 3.4, which means that $|a^{-1}|$ divides m as well. Now if we show $ab \in H$ then we can conclude that H is a subgroup of G by theorem 3.2 so let $a, b \in H$ and n = |a| and k = |b|. Then we know that the $\lim(n, k) m$ by T1. It follows then that since G is Abelian that $\lim(ab)^t = a^tb^t = e$, where $\lim(n, k)$. Furthermore, $|ab| = r \le t$ but $\lim(n, k)$ must divide $\lim(n, k)$ and $\lim(n, k)$ then $\lim(n, k)$ is first questions. $\lim(n, k)$ must subgroup of $\lim(n, k)$ when $\lim(n, k)$ is only one integer from the entire set of natural numbers. Yes the proof would be valid if we replaced any positive integer.

4.18 If a cyclic group has an element of infinite order, how many elements of finite order does it have?

$$5^{15} \mod 7 = (5^7 \mod 7) \cdot (5^7 \mod 7) \cdot (5 \mod 7)$$

= $(5 \mod 7) \cdot (5 \mod 7) \cdot (5 \mod 7)$
= $(5^3 \mod 7)$
= $126 \mod 7$
= 6

where the second equality (above and below) is from Fermat's Little Theorem.

$$7^{13} \mod 11 = (7^{11} \mod 11) \cdot (7^2 \mod 11)$$

= $(7 \mod 11) \cdot (49 \mod 11)$
= $(7 \cdot 5 \mod 11)$
= $35 \mod 11$
= 2

7.22 Suppose that G is a group with more than one element and G has no project contrivial subgroups. Prove that |G| is prime. (Do not assume at the outse that G is finite.)

Suppose that G is a group with more than the element and G has no proper, nontrivial subgroups. Now, let g be a subgroup of G. But since G has no proper subgroups, it must be that $\langle g \rangle = G$, which means that G is cyclic. Find, it thust follow that G can only be finite, otherwise $\langle g^2 \rangle$ is a proper abgroup and a contradiction. So by theorem 4.3, we know if $k \mid n = G \mid$ then there is a subgroup of order k, yet this means that k cannot be anything other than 1 or n (otherwise we would have a proper subgroup), so it must be that the order of G is prime.

7.26 Let |G| = 8. Show that G must have an element of order 2.

Let g be any nonidentity element in G. Then by Corollary 2, |g| divides |G|. Since |G|=8, |g| must be 2, 4, or 8. The case where |g|=2 is clear and we're done. Otherwise, |g|=4 or |g|=8, then $|g^2|=2$ or $|g^4|=2$, respectively and again we're done.

7.28 Show that \mathbb{Q} , the group of rational numbers under addition, has no proper subgroup of finite index.

For the sake of contradiction, let us suppose that H is a proper subgroup of \mathbb{Q} under addition with a finite index. Then there exist an element, $z \in \mathbb{Q} \backslash H$, which also means that $\frac{z}{2} \notin H$. Notice now for every $n \in \mathbb{N}$, either $(\frac{z}{2} + \frac{z}{n}) \notin H$ or $(\frac{z}{2} - \frac{z}{n}) \notin H$, otherwise $[(\frac{z}{2} + \frac{z}{n}) + (\frac{z}{2} - \frac{z}{n})] \in H$ and that implies that $z \in H$.

Thus there exists a $k \in \mathbb{N}$ with $(\frac{z}{2} \pm \frac{z}{n}) \notin H$ such that $\frac{z}{2} + H = \frac{z}{2} \pm \frac{z}{k} + H$, which we know must be true since H has a finite index. Now for the positive case,

$$\left(\frac{z}{2} + \frac{z}{k}\right) - \frac{z}{2} = \frac{z}{k} \in H \Rightarrow \left\langle \frac{z}{k} \right\rangle \subseteq H \Rightarrow z \in H$$

or for the negative case,

$$\frac{z}{2} - \left(\frac{z}{2} - \frac{z}{k}\right) = \frac{z}{k} \in H \Rightarrow \left\langle \frac{z}{k} \right\rangle \subseteq H \Rightarrow z \in H$$

Contradiction since there does not exist a $k \in \mathbb{N}$ such that $\frac{z}{2} + H = \frac{z}{2} \pm \frac{z}{k} + H$. Thus there is no proper subgroups of \mathbb{Q} under addition with finite index.

7.33 Let G be a group of order p^n where p is prime. Prove that the center of G cannot have order p^{n-1} .

For the sake of contradiction, let $|Z(G)| = p^{n-1}$. Then, there are p elements in G that are not in Z(G). So, take one of those elements, let's say $g \in G \setminus Z(G)$, and look at the centralizer of g. Since g always commutes with itself, it to lows that $g \in C(g)$. Furthermore, g commutes with all the elements from the center, so $Z(G) \subseteq C(g)$. Now, we know by theorem 2-6 fract $C(g) \le G$ and from Lagrange's theorem that |C(g)| must divide G. But from what we've said, |C(g)| must be strictly larger than |Z(G)| thus it can only be that |C(g)| is p^n . This means that G = C(g), which implies that g constites with every element of G and must be in the cut G. Contradiction since g cas chosen such that $g \notin Z(G)$.

7.47 Letermine all finite subgreaps of \mathbb{C}^* , the group of nonzero complex numbers under multiplication.

The n^{th} roots of unity are those complex numbers, x, such that $x^n = 1$. In fact, by the fundamental theorem of algebra, there are n such roots for any $n \in \mathbb{N}$. Furthermore, these roots form a cyclic subgroup in \mathbb{C}^* under multiplication and we can find them by $e^{(2\pi ik)/n}$ for any $n \in \mathbb{N}$, $k = 0, 1, \ldots, n-1$. Thus, $\{e^{(2\pi ik)/n} \mid k = 0, 1, \ldots, n-1\}$ is a cyclic subgroup of order n in \mathbb{C}^* under multiplication for any $n \in \mathbb{N}$ and, moreover, this finds all the finite subgroups of \mathbb{C}^* .

8.2 Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ has seven subgroups of order 2.

 $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 = \{(0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$. So, (0,0,0) is the identity and with any nonidentity element, there being 7 in total, forms a subgroup. Note that this is possible since any nonidentity element has an order of 2 and thus must be its own inverse.

8.10 How many elements of order 9 does $\mathbb{Z}_3 \oplus \mathbb{Z}_9$ have?