

MODULE - IV Functions

Notes

15.15 CLASSIFICATION OF FUNCTIONS

Let f be a function from A to B. If every element of the set B is the image of the least one element of the set A i.e. if there is no unpaired element in the set B then we say that the function f maps the set A onto the set B. Otherwise we say that the function maps the set A into the set B. Functions for which each element of the set A is mapped to a different element of the set B are said to be *one-to-one*

Fig.15.27 The domain is { A, B, C}

The co-domain is $\{1, 2, 3, 4\}$

The range is $\{1,2,3\}$

A function can map more than one element of the set A to the same element of the set B. Such a type of function is said to be *many-to-one*.

(•••	It is only	increasing	function	on this	interval)
	•					

- $\forall x_1, x_2 \in (-\infty, 0)$ But
 - $x_1 < x_2 \implies F(x_1) > F(x_2)$
- F is a *Monotonic Function* on $[-\infty, 0]$ \Rightarrow

(: It is only a decreasing function on this interval)

Therefore if we talk of the whole domain given function is not monotonic on R but it is monotonic on $(-\infty, 0)$ and $(0, \infty)$.

Again consider the function $F: R \rightarrow R$ defined by $f(x) = x^3$.

Clearly $\forall x_1 x_2 \in \text{domain}$

 $x_1 < x_2 \implies F(x_1) < F(x_2)$

: Given function is *monotonic* on R i.e. on the whole domain.

15.17.2 Even Function

$$F(-x) = F(x)$$

15.17.2 Even Function
A function is said to be an even function if for each x of domain

$$F(-x) = F(x)$$

For example, each of the following is an *even function* **O**
(i) If $F(x) = x^2$ then $F(-x) = (-x)^2 - x^2 - 3T(x)^4$
(ii) If $F(x) = \cos x$ then $F(-x) = (-x)^2 - \cos x - F(x)$
(iii) If $F(x) = |x|$ then $F(-x) = |-x| = |x| - F(x)$

Fig. 15.45

The graph of this even function (modulus function) is shown in the figure above.

Observation

Graph is symmetrical about y-axis.

MODULE - IV Functions

 $a^m \cdot a^n = a^{m+n}$

