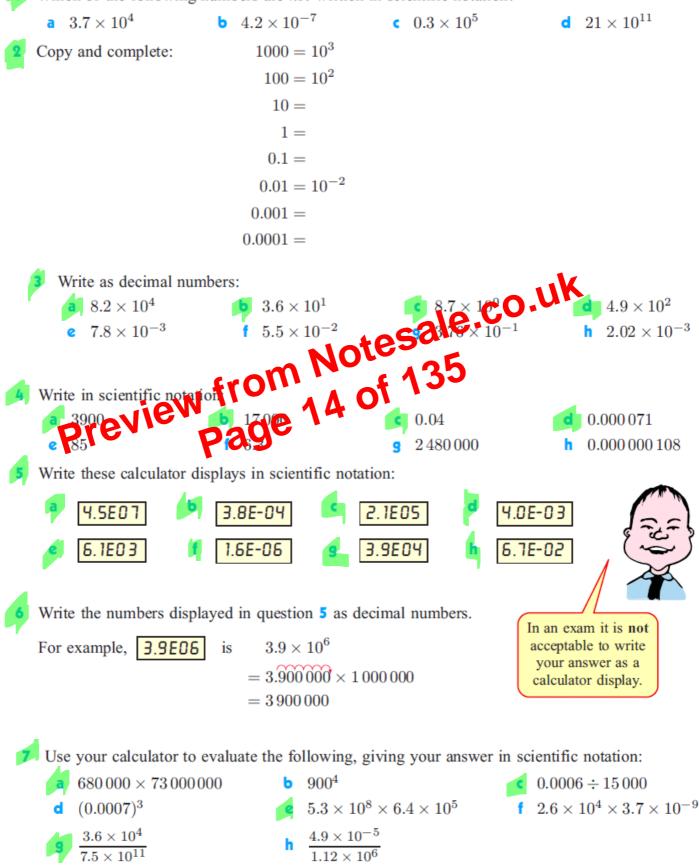


Questions A

Saturday, 12 August 2017 3:27 PM

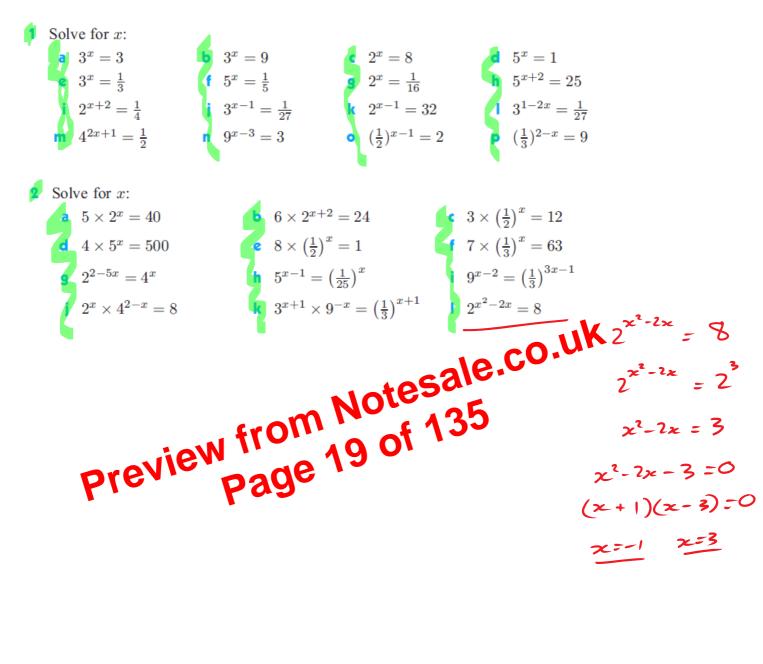
Which of the following numbers are *not* written in scientific notation?



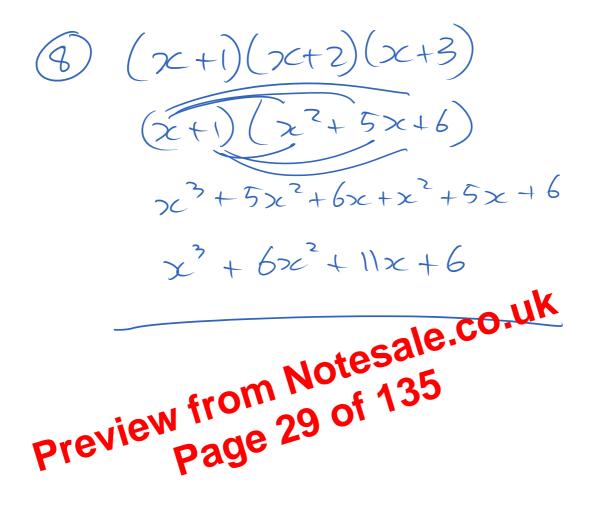
Unit One Polynomials Page 14

Questions B

Saturday, 12 August 2017 3:24 PM



1	а	x = 1	b x	= 2	c	x = 3	d	x = 0
	e	x = -1	f x	= -1	9	x = -4	h	x = 0
	i	x = -4	j x	= -2	k	x = 6	Т	x = 2
	m	$x = -\frac{3}{4}$	n x	$=\frac{7}{2}$	0	x = 0	p	x = 4
2	а	x = 3	b x	= 0	c	x = -2	d	x = 3
	e	x = 3	f x	= -2	9	$x = \frac{2}{7}$	h	$x = \frac{1}{3}$
	i	x = 1 j	x = 1	k no so	lut	ion $\mathbf{I} x =$	3 (or -1



Further Expansion

Sunday, 13 August 2017 1:14 PM

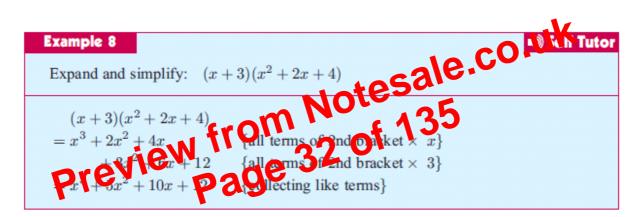
In this section we expand more complicated expressions by repeated use of the expansion laws.

Consider the expansion of (a+b)(c+d+e).

Now (a+b)(c+d+e) = (a+b)c + (a+b)d + (a+b)e = ac + bc + ad + bd + ae + beCompare: $\Box(c+d+e)$ $= \Box c + \Box d + \Box e$

Notice that there are 6 terms in this expansion and that each term within the first bracket is multiplied by each term in the second.

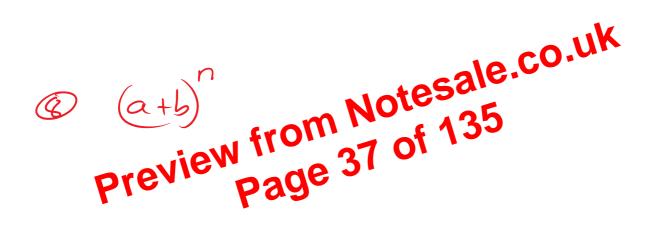
2 terms in first bracket \times 3 terms in second bracket \rightarrow 6 terms in expansion.



Example 9	📣 Self Tutor
Expand and simplify:	
a $x(x+1)(x+3)$	b $(x+1)(x-3)(x+2)$
a $x(x+1)(x+3)$	
$= (x^2 + x)(x+3)$	$\{ all terms in first bracket \times x \}$
$=x^{3}+3x^{2}+x^{2}+3x$	{expand remaining factors}
$=x^3+4x^2+3x$	{collect like terms}
b $(x+1)(x-3)(x+2)$	
$= (x^2 - 3x + x - 3)(x + 2)$	{expand first two factors}
$= (x^2 - 2x - 3)(x + 2)$	{collect like terms}
$= x^3 - 2x^2 - 3x + 2x^2 - 4x - 6$	{expand remaining factors}
$=x^3-7x-6$	{collect like terms}

 $\bigcirc (c-\frac{1}{2})^4$

 $(\widehat{\mathcal{F}}) = \left(\frac{\chi}{2} - \frac{1}{3}\right)^{5}$



Extension

Friday, 18 August 2017 6:30 AM

- Find the coefficient of x^{-3} in the expansion of $(x-1)^3 \left(\frac{1}{x} + x\right)^6$. 5.
- Find the constant term in the expansion of $\left(x \frac{1}{2x}\right)^{10}$. 6.
- Find the constant term in the expansion of $\left(3x \frac{1}{6x}\right)^{12}$. 7.

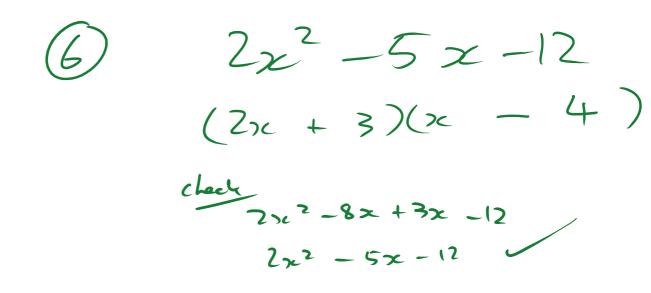
Find the term independent of x in the expansion of $(2-x)^3 \left(\frac{1}{3x} - x\right)^6$. 8.

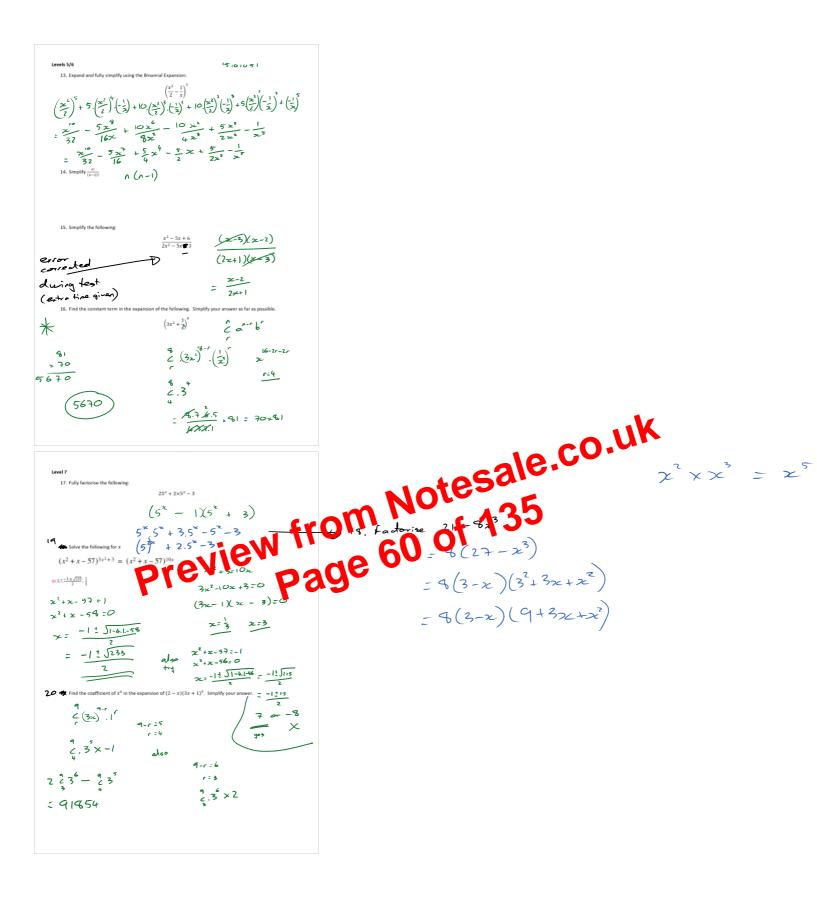
9. Find the term independent of x in the expansion of $(2x - b) (0, 1 + x)^{6}$. NoteSale $(2x - b) (2x + x)^{6}$.

5. 19 **6.**
$$-\frac{63}{8}$$
 7. $\frac{231}{16}$ **8.** $-\frac{130}{27}$ **9.** -20

 $\chi^2 - 7\chi + 12$ (x - 3)(x - 4)

 $3x^2 + 14xuk = 5$ Preview from Notesale.co.uk Preview from Notesale.co.uk





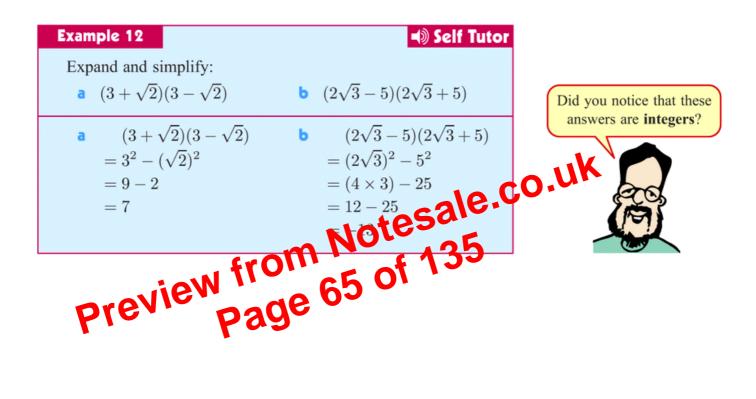
Example 11

Self Tutor

Expand and simplify:

a
$$(\sqrt{3}+2)^2$$

b $(\sqrt{3}-\sqrt{7})^2$
a $(\sqrt{3}+2)^2$
 $= (\sqrt{3})^2 + 2 \times \sqrt{3} \times 2 + 2^2$
 $= 3 + 4\sqrt{3} + 4$
 $= 7 + 4\sqrt{3}$
b $(\sqrt{3}-\sqrt{7})^2$
 $= (\sqrt{3})^2 + 2 \times \sqrt{3} \times (-\sqrt{7}) + (-\sqrt{7})^2$
 $= 3 - 2\sqrt{21} + 7$
 $= 10 - 2\sqrt{21}$



Exercise 4F - Equality of Surds

Sunday, 27 August 2017 12:47 PM

- Solve for x and y given that they are rational: $x + y\sqrt{2} = 3 + 2\sqrt{2}$ **b** $15 - 4\sqrt{2} = x + y\sqrt{2}$ $-x + y\sqrt{2} = 11 - 3\sqrt{2}$ **d** $x + y\sqrt{2} = 6$ $x + y\sqrt{2} = -3\sqrt{2}$ $f x + y\sqrt{2} = 0$ Solve for x and y given that they are rational: $(x+y\sqrt{2})(2-\sqrt{2}) = 1+\sqrt{2}$ **b** $(x+y\sqrt{2})(3+\sqrt{2})=1$ $(2 - 3\sqrt{2})(x + y\sqrt{2}) = \sqrt{2}$ **d** $(x+y\sqrt{2})(3-\sqrt{2}) = -4\sqrt{2}$ Find rationals a and b such that: $(a+\sqrt{2})(2-\sqrt{2}) = 4 - b\sqrt{2}$ **b** $(a+3\sqrt{2})(3-\sqrt{2})=6+b\sqrt{2}$ $(a+b\sqrt{2})^2 = 33+20\sqrt{2}$ d $(a+b\sqrt{2})^2 = 41 - 24\sqrt{2}$ Find $\sqrt{11-6\sqrt{2}}$. Hint: $\sqrt{2}$ is never negative.
- **a** Write $\sqrt{11+4\sqrt{6}}$ in the form $a\sqrt{2}+b\sqrt{3}$ where $a, b \in \mathbb{Q}$.
 - **b** Can $\sqrt{11+4\sqrt{6}}$ be written in the form $a+b\sqrt{6}$ where $a, b \in \mathbb{Q}$? Explain your answer.

(20) (2-352)(x+y52)=52 2x+2y5z-35x-6y=5z2y-32= 22 - 6y = 0 (34) = 1 X

75 = 1

y =

$$-3y = 0$$
 $2y - 3(3y)$
 $x = 3y = 0$ $2y - 9y = 1$

review from Notesale.co **1 a** x = 3, y = 2**b** x = 15, y = -4**d** x = 6, y = 0x = -11, y = -3• x = 0, y = -3f x = y = 0**a** $x = 2, y = \frac{3}{2}$ **b** $x = \frac{3}{7}, y = -\frac{1}{7}$ d $x = -\frac{8}{7}, y = -\frac{12}{7}$ $x = -\frac{3}{2}, y = -\frac{1}{2}$ **a** a = 3, b = 1a = 5, b = 2 or a = -5, b = -2d a = 3, b = -4 or a = -3, b = 44 Let $\sqrt{11-6\sqrt{2}} = a + b\sqrt{2}; a, b \in \mathbb{Q}$ Show $a + b\sqrt{2} = 3 - \sqrt{2}$ or $-3 + \sqrt{2}$

```
But 11 - 6\sqrt{2} > 0
\therefore \sqrt{11 - 6\sqrt{2}} = 3 - \sqrt{2}
```

5 a $\sqrt{11 + 4\sqrt{6}} = 2\sqrt{2} + \sqrt{3}$ b No. (Suppose it can and a Ex4E Q4 and Q6

(

$$49 \frac{1+5}{1-5} + \frac{1-5}{1+5}$$

$$a_{abc} i_{abc} a_{single + to dram}$$

$$(4457)(1+52) + (1-52)(1-52)$$

$$= \frac{(1+52)(1+52)}{(1-52)(1+52)} + (1-52)^{2}$$

$$= \frac{(1+53)^{2} + (1-52)^{2}}{(1-52)(1+52)} = \frac{(3+2)52^{2}}{-1}$$

$$= \frac{(1+2)5^{2} + (1-52)^{2}}{-1}$$

$$= \frac{(1+2)5(2+2+1-2)5(2+2)}{-1}$$

$$= -6$$

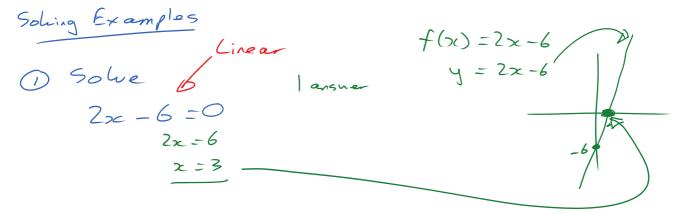
$$how try anotherase$$

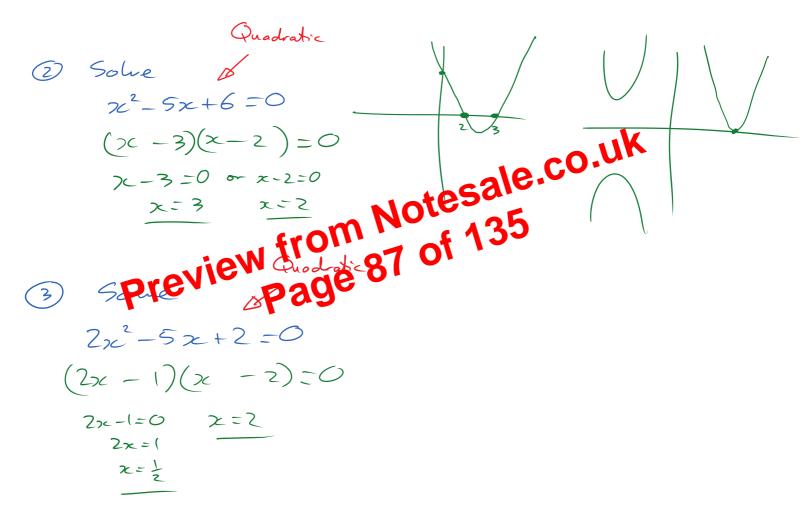
$$Notesale.co.uk$$

$$Preview from Notesale.co.uk$$

Solving Examples

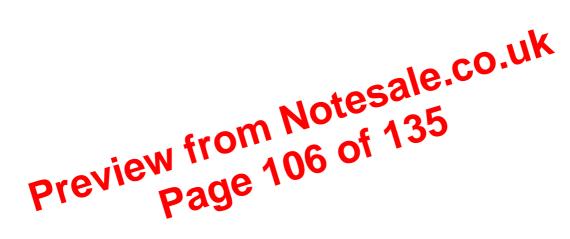
Friday, 01 September 2017 8:18 AM





(9)
$$3x^{4} - 24x^{3} + 48x^{2} = 0$$

 $3x^{2} (x^{2} - 8x + 16) = 0$
 $4 - 4$
 $3x^{2} = 0 (x - 4)^{2} = 0$
 $x^{2} = 0$
 $2x^{2} - 30x^{4} + 88x^{2} = 0$
 $2x^{2} (x^{4} - 15x^{2} + 44) = 0$
 $2x^{2} (x^{4} - 15x^{2} + 44) = 0$
 $2x^{2} (x^{4} - 15x^{2} + 44) = 0$
 $2x^{2} (x^{2} - 11)(x^{2} - 4) = 0$
 $2x^{2} = 0 - 2x^{2} - 11 (x^{2} - 4) = 0$
 $x^{2} = 0 - 2x^{2} - 11 (x^{2} - 4) = 0$
 $x^{2} = 0 - 2x^{2} - 11 (x^{2} - 4) = 0$
 $x^{2} = 0 - 2x^{2} - 11 (x^{2} - 4) = 0$
 $x^{2} = 0 - 2x^{2} - 11 (x^{2} - 4) = 0$
 $x^{2} = 0 - 2x^{2} - 11 (x^{2} - 4) = 0$
 $x^{2} = 0 - 2x^{2} - 11 (x^{2} - 4) = 0$



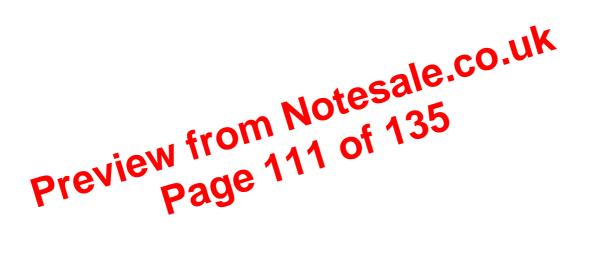
Preview from Notesale.co.uk Page 110 of 135

tch by factor a

ngh x axis

3Adv Lesson 12: Advanced Quadratics

Friday, 15 September 2017 8:24 AM



Unit One Polynomials Page 111

B: Sum and Product of Roots

Friday, 15 September 2017 8:29 AM

If
$$ax^2 + bx + c = 0$$
 has roots α and β , then $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$.
For example: If α and β are the roots of $2x^2 - 2x - 1 = 0$
then $\alpha + \beta = 1$ and $\alpha\beta = -\frac{1}{2}$.
Proof: If α and β are the roots of $ax^2 + bx + c = 0$,
then $ax^2 + bx + c = a(x - \alpha)(x - \beta)$
 $= a(x^2 - [\alpha + \beta]x + \alpha\beta)$
Equating coefficients,
 $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$.
Example 11
Find the sum and product of it for of $25x^2 - c0x + 355$.
Check your answer by solving the quadrate
If α and β are the root of $a\beta = \frac{c}{a} = \frac{1}{25}$
Check: $25x^2 - 20x + 1 = 0$ has roots
 $\frac{20 \pm \sqrt{400 - 4(25)(1)}{50} = \frac{20 \pm \sqrt{300}}{50} = \frac{20 \pm 10\sqrt{3}}{5} = \frac{2 \pm \sqrt{3}}{5}$
These have sum $= \frac{2 + \sqrt{3}}{5} + \frac{2 - \sqrt{3}}{5} = \frac{4}{5}$ \checkmark
and product $= \left(\frac{2 + \sqrt{3}}{5}\right) \left(\frac{2 - \sqrt{3}}{5}\right) = \frac{4 - 3}{25} = \frac{1}{25}$

Extension Questions

Friday, 15 September 2017 8:31 AM

- 2 The equation $kx^2 (1 + k)x + (3k + 2) = 0$ is such that the sum of its roots is twice their product. Find k and the two roots.
- 3 The quadratic equation $ax^2 6x + a 2 = 0$, $a \neq 0$, has one root which is double the other.
 - **a** Let the roots be α and 2α . Hence find two equations involving α .
 - **b** Find *a* and the two roots of the quadratic equation.
- 4 The quadratic equation $kx^2 + (k-8)x + (1-k) = 0$, $k \neq 0$, has one root which is two more than the other. Find k and the two roots.

Preview from Notesale.co.uk Page 123 of 135

2
$$k = -\frac{3}{5}$$
, roots are -1 and $\frac{1}{3}$
3 **a** $3\alpha = \frac{6}{a}$, $2\alpha^2 = \frac{a-2}{a}$
b $a = 4$, roots are $\frac{1}{2}$ and 1 or $a = -2$, roots are -1 and -2
4 $k = 4$, roots are $-\frac{1}{2}$ and $\frac{3}{2}$ or $k = 16$, roots are $-\frac{5}{4}$ and $\frac{3}{4}$

3 a
$$\Delta = 16 - 4m$$

i $m = 4$ ii $m < 4$ iii $m > 4$
b $\Delta = 9 - 8m$
i $m = \frac{9}{8}$ ii $m < \frac{9}{8}$ iii $m > \frac{9}{8}$
c $\Delta = 9 - 4m$
i $m = \frac{9}{4}$ ii $m < \frac{9}{4}$ iii $m > \frac{9}{4}$
i $m = \frac{9}{4}$ ii $m < \frac{9}{4}$ iii $m > \frac{9}{4}$
i $m = \frac{9}{4}$ ii $m < \frac{9}{4}$ iii $m > \frac{9}{4}$
i $k < -8 \text{ or } k > 0$ ii $k < -8 \text{ or } k \ge 0$
iii $k = -8 \text{ or } 0$ iv $-8 < k < 0$
b $\Delta = 4 - 4k^2$
i $-1 < k < 1$ ii $-1 < k < 1$
ii $-1 < k < 1$ ii $-1 < k < 1$
ii $k < -6 \text{ or } k > 2$ ii $k < -6 \text{ or } k \ge 2$
ii $k < -6 \text{ or } k > 2$ ii $k < -6 \text{ or } k \ge 2$
ii $k < -6 \text{ or } k > 2$ ii $k < -6 \text{ or } k \ge 2$
ii $k = -6 \text{ or } 2$ iv $-6 < k < 2$
d $\Delta = k^2 - 4k - 12$
i $k < -2 \text{ or } k \ge 6$ if $k < -3$ or $k \ge 6$ if $k < -3$ or $k \ge 6$ if $k < 3$
ii $k = -\frac{13}{9} \text{ or } 3$ ii $k < -\frac{13}{9} \text{ or } k \ge 3$
ii $k = -\frac{13}{9} \text{ or } 3$ ii $k < -\frac{13}{9} \text{ or } k \ge 3$
ii $k = -3k^2 - 4k$
i $-\frac{4}{3} < 0$ iv $k < -\frac{4}{3}$ or $k > 0$

3Adv Lesson 14 Division of Polynomials

Friday, 22 September 2017 6:58 AM

() Addition $(x^{3}+x^{2}-3x+5)+(2x^{2}-x-3)=x^{3}+3x^{2}-4x+2$ 2 Subtraction $\chi^{2} + 7\chi - 2 - (\chi^{5} - 2\chi + 1) = \chi^{2} + 7\chi - 2 - \chi^{5} + 2\chi - 1$ = $-\chi^{5} + \chi^{2} + 9\chi - 3$ Preview from Notesale.co.uk Preview from 128 of 135 Division 3) Multiplication (4)