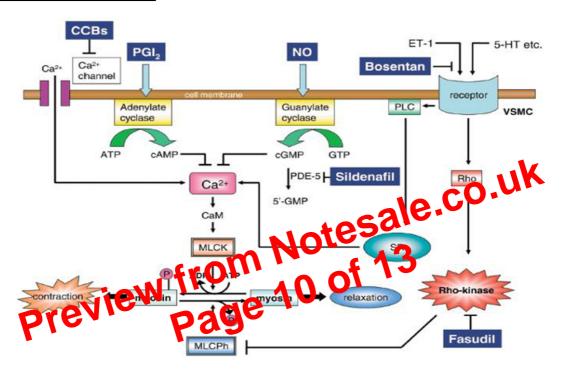

#### Hypertensive nephropathy

- Granular cortical atrophy due to nephrosclerosis
  - Leads to cell death and Necrosis decreased vascular perfusion affects renal arteries
- Loss of a glomerulus causes atrophy of the nephron

### Regulation of Blood Pressure

#### BP=CO x TPR

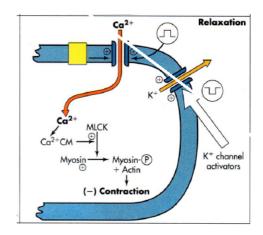



# Classification of Hypertension (BHS)

| Category                                 | Systolic blood pressure (mmHg) | Diastolic blood<br>pressure (mmHg) |
|------------------------------------------|--------------------------------|------------------------------------|
| Optimal blood pressure                   | <120                           | <80                                |
| Normal blood pressure                    | <130                           | <85                                |
| High-normal blood pressure               | 130-139                        | 85-89                              |
| Grade 1 Hypertension (mild)              | 140-159                        | 90-99                              |
| Grade 2 Hypertension (moderate)          | 160-179                        | 100-109                            |
| Grade 3 Hypertension (severe)            | <u>≥</u> 180                   | <u>≥</u> 110                       |
| Isolated Systolic Hypertension (Grade 1) | 140-159                        | <90                                |
| Isolated Systolic Hypertension (Grade 2) | <u>≥</u> 160                   | <90                                |

### **Differences in ET receptors**

- ET-A
  - Located on Smooth Muscle cells
  - Mediate vasoconstriction
- ET-B
  - Located on endothelial and smooth muscle cells
  - SMCs mediate vasoconstriction
  - ECs mediate vasodilation


### **Endothelin and Drug targets**



#### Extra information:

# K+ Channel openers/agonists

- Drugs:
  - Minoxidil
  - Diazoxide
- Mechanism of action:
  - VSM hyperpolarisation
  - Reduction in VDCC activity
  - Reduction in [Ca2+]i
  - Increased relaxation

