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The force per unit length is thus given by

F =

∫
dA∆p =

∫ b/2

−b/2
dx ρU2

0

aπ

b
cos
(πx
b

)
= 2aρU2

0

By the Kutta-Joukowski Theorem:

F = −ρU0Γ −→ Γ = −2aU0

This means that the circulation is negative (resulting in lift), and that there must be a
trailing vector on the edge of the wing.

F = 2(0.1)(2)2(103) = 800 Nm−1

Evaluating the Reynolds number for this �ow:

Re =
U0`0
ν

v
U0a

ν
v 105 � 103

This means that the Laminar �ow assumption is not valid, as the �ow is turbulent.

Question 2

Consider the Navier Stokes equation

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ η∇2u−∇χ

Assume that the �ow is steady (∂tu = 0), viscous (ν � 1), and ignore the e�ects of gravity
(χ = 0). As ν � 1, Re� 1, meaning that we can neglect the inertial terms in the Navier
Stokes. Then:

1

ρ
∇p = ν∇2u

Assume that the �ow is only along x (we can neglect �ow along y and z due to symmetry
constraints). Then, as ∇p = −f , we have that

1

ρ
(−f) = ν∇2u = ν

∂u

∂z2

assuming that the �ow varies along z (cannot vary along y due to symmetry, nor along x
due to the fact that the �ow is steady, and well-developed). Integrating:

u =
1

2ρν

∂p

∂x
z2 + c1z + c2

Boundary conditions: u = 0 at z = 0 and z = b.

c2 = 0

c1 = − 1

2ρν

∂p

∂z
b

→ u =
1

2ρν

∂p

∂z
z(z − b) = − f

2ρν
z(z − b)

This is a valid solution for the �ow if Re� 1, meaning that we require that

ν � u0`0 = b
fb2

8ρν
−→ ν2 � fb3

8ρ

The remainder of this question appears to be no longer on syllabus, so I will not provide

any solution here
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such that

−λ(a− λ) + 1 = 0

−λa+ λ2 + 1 = 0

λ =
a

2
± i
√

1−
(a

2

)2
As a � 1, the quantity inside the square root is positive, so the �xed point is clearly an
unstable spiral. Con�nement in the x-y plane will break down when x v c, as this means
that we can no longer neglect the former term.

Consider

Λ =
1

2
(J + J T ) =

 0 0 1
2(z − 1)

0 a 0
1
2(z − 1) 0 x− c


λ2 = a, meaning that displacements in the y direction grow exponentially. Considering
the symmetrised Jacobean in the x-z plane:

Λxz =

(
0 1

2(z − 1)
1
2(z − 1) x− c

)
→ λ1, λ3 =

1

2
(x− c)± 1

2

√
(x− c)2 + (z − 1)2

Thus, as λ2 > 0, either λ1 or λ3 is less than zero. Thus, errors will grow in two directions,
and shrink in another, unless z = 1. Now for x = c,

Λxz =

(
0 1

2(z − 1)
1
2(z − 1) 0

)
This allows us to conclude that

λ1 =
1

2
(z − 1), e1 = (1, 0, 1) fastest growth

λ3 = −1

2
(z − 1), e2 = (1, 0,−1) fastest decay

λ2 = a, e3 = (0, 1, 1)

Question 4

I am not going to provide solutions to this question, given that it is completely un-enlightening

to solve, and will not really inform any revision on the subject. There are also some de-

partmental solutions online if the reader very much desires to see it solved.
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Assuming no forcing (f = 0), it si clear that this equation does not depend explicit on
time, and only on space:

∇p(r, t) = η∇2u(r, t)

But

∇p(r,−t) = η∇2u(r,−t)

will also describe the same dynamical behaviour, meaning that such �ows are time re-
versible.

Now, consider the dimensions of the relevant quantities:

[D] = [F ] = MLT−2

[η] = ML−1T−1

[a] = L

[u0] = LT−1

It is thus clear that

D = κaηu0

for some constant of proportionality κ. Thus, as given by the question,

D = 6πaηu0

We can use NII to write the equation of motion of the drop:

m
du

dt
= mg − 6πaηu

At terminal velocity, du/dt = 0, such that

6πaηut =
4π

3
a3(ρ− ρ0)g −→ ut =

2a2

9m
(ρ− ρ0)g

where ρ ≈ 103 kgm−3 and ρ0 ≈ 1.2kgm−3 are the density of the water droplet and air
respectively. We thus estimate that ut ≈ 0.012 ms−1. Evaluating the Reynolds number:

Re =
u0`0
ν

v
uta

ρ0η
v 0.005

meaning that we are indeed in the low Reynolds number limit.

Consider NII:

mẍ =
∑

F = Drag + Stochastic Forces = −γẋ + F(t)

where γ = 6πηa, and F is some stochastic �eld that satis�es〈
F(t) · F(t′)

〉
= 2κδ(t− t′)

for some characteristic constant κ. Physically, this delta-correlated �eld is due to the ran-
dom thermal �uctuations of the molecules surrounding our test mass m that 'bumps' it
around.
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For small Re �ows, viscous e�ects are dominant, and so we ignore the inertial terms. Then,
the Navier Stokes equation becomes

1

ρ
(∇p+∇χ) = ν∇2u

Assuming that χ is the conservative potential associated with the gravitational force, so
χ = ρgz. We thus arrive at

∇(p+ ρgz) = ρν∇2u

as required. u will vary most along z as ∂2/∂z2 v 1/h2, which is a small quantity;
derivatives along z dominate. Furthermore, we have that

∂

∂z
(∇hp) = 0

due to the fact that the �ow must be well-developed. Taking the horizontal component of
our Stokes' equation, we have that

∂2uh
∂z2

=
1

ρν
∇hp

which has solution

uh =
1

ρν
∇hpz2 + c1z + c2

for constants c1 and c2. We have the boundary conditions

uh = 0 at z = 0 −→ c2 = 0

uh = 0 at z = h

such that

uh = − 1

2ρν
z(h− z)∇hp

as required. Now, by incompressibility, we have that

∇ · u = ∇h · uh +
∂uz
∂z

= 0

However, as h is small, we argue that there cannot be a large �ow along z, so uz v 0. This
means that

∇h · uh = 0− 1

2ρν
z(h− z)∇2

hp −→ ∇2
hp = 0

The vertical component of the Stokes' equation reads

∂p

∂z
= ρg −→ pz = −ρgz + c3

The solution to Laplace's equation in cylindrical polar coordinates is of the form

ph =
(
c1r +

c2
r

)
cos θ

meaning that a full solution is of the form

p = −p1
(
r +

a2

r

)
cos θ − ρgz + p0
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which has solutions

λ = −b, λ = −1

2

[
(1 + σ)±

√
1− (2− 4r)σ + σ2

]
Thus, trajectories along z converge to zero at an exponentially fast rate. In the case of
the second set of eigenvalues, these are clearly all negative for r < 1, and thus stable. For
r > 1, then this is clearly a saddle point, meaning that a supercritical pitchfork bifurcation
clearly occurs at rc = 1.

Consider a volume element

δV = δxδyδz

Then, clearly,

δV̇

δV
=
δẋ

δx
+
δẏ

δy
+
δż

δz
≈ ∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −(1 + σ + b)

This means that volumes will evolve as

δV = δV0e
−(1+σ+b)t

That is, the volume elements in phase space converge to zero. This implies the existence
of a strange attractor contained within a �nite trapping region.

A positive Lyapanov exponent means that trajectories in phase space will separate ex-
ponentially quickly, but these will remain con�ned within some �nite region of space (as
volumes contract). This implies that the geometry of the phase space must be fractal in
nature (stretching and folding, self similar at all scales). A positive Lyapanov exponent
also implies chaotic behaviour, characterised by

• Aperiodic long term behaviour

• Sensitive dependence on initial conditions

• Deterministic, despite its unpredictable nature

Evaluating the required expressions, it trivially follows that

ėx = σ(ey − ex)

ėy = −ey − xez
ėz = xey − bez
Ė = −2(e2x + e2y + be2z − exey)

It is clear that Ė < 0. This means that ex, ey, ez → 0 at long times, such that x → X,
y → Y , z → Z. If x(t) is known, then the system of equations in X, Y and Z is no longer
non-linear, and can be solved fully. Likewise, we can fully solve the ex, ey, ez system,
which will allow us to obtain the solutions to the Lorenz system at long times.
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Now, we de�ne the torque

T = −∂U
∂θ

From the graphs, we see that

TA = −∂UA
∂θ

=

{
−U0/π for s < θ < s+ π

U0/π for s+ π < θ < s+ 2π

Then, the average torque is given by

T̄ (s) =

∫ s+2π

s
dθ PA(θ)TA(θ) =

U0

π

(
−
∫ s+π

s
dθ PA(θ) +

∫ s+2π

s+π
dθ PA(θ)

)
meaning that T0 = U0/π. Given the periodicity of our solutions, we can actually write this
expression as

T̄ (s) = T0

∫ s+π

s
dθ (PA(θ + π)− PA(θ))

To maximise the torque, use the fundamental theorem of calculus:

T̄ ′(smax) = T0 [PA(smax + 2π)− PA(smax + π)− PA(smax + π) + PA(smax)]

= 2T0 [PA(smax)− PA(smax + π)] = 0

where we have again used the fact that the solution is periodic. This means that

PA(smax) = PA(smax + π)

But by de�nition

PA(θ) + PA(θ + π) =
1

2π

such that

PA(smax) = PA(smax + π) =
1

4π

Let us consider the two cases given:

• ω � k0: The solution is dominated by the exponential, such that
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2014

Question 1

Irrotational: ∇× u = 0 −→ u = ∇φ
Incompressible: ∇ · u = 0 −→ ∇2φ = 0
Thus, the velocity potential obeys Laplace's equation.

Consider the Navier Stokes equation

∂u

∂t
+ (u · ∇)u +

1

ρ
∇(p+ χ) = ν∇2u

Inviscid, so ν = 0, such that

∂

∂t
(∇φ) + (∇φ · ∇)∇φ+

1

ρ
∇(p+ χ) = 0

We now use the vector identity, such that

(∇φ · ∇)∇φ = (∇×∇φ)×∇φ+
1

2
∇(∇φ · ∇φ) =

1

2
∇(∇φ · ∇φ)

where we have used the fact that ∇×∇φ = 0, such that

∇
(
∂φ

∂t
+

1

2
(∇φ · ∇φ) +

1

ρ
(p+ χ)

)
= 0

Integrating, and letting χ = ρgz, we have that

∂φ

∂t
+

1

2
(∇φ · ∇φ) +

p

ρ
+ gz = constant

We have the following boundary conditions:

• At z = H:

∂η

∂t
− ∂φ

∂z
= 0

ie. that the motion of the upper surface is governed by the vertical component of the
�ow. We have assumed that the velocity changes are small, such that dη/dt ≈ ∂η/∂t.

• Assuming small velocities, and that p = 0 at the surface, such that

∂φ

∂t
+ gz = constant

along the surface. We can make a gauge choice to set the constant to zero, meaning
that our second boundary condition at z = H becomes

∂φ

∂t
+ gη = 0

• At z = 0, we have that

∂φ

∂z
= 0

as we require that there is no perpendicular of the �ow at the lower boundary.
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no longer neglect the term ν∇2u in the Navier Stokes.

∇p
ρ

v ν∇2u

p

ρ`
v
νu

`2

` v
νuρ

p

But p/ρ v c2, and the typical velocity scale of u is u v c. We thus conclude that

` v
ν

c

Letting c ≈ 330 ms−1, ν = 1.5× 10−5 m2s−1, such that ` ≈ 5× 10−8 m.

Question 3

Fixed points for ṙ = 0, so

yz = 0

x = y

1− xy = 1

x = y = ±1

z = 0

Thus, the �xed points occur at

(1, 1, 0), (−1,−1, 0)

Stability is given by the eigenvalues of J , where

J =

 0 z y
1 −1 0
−y −x 0


Finding eigenvalues: ∣∣∣∣∣∣

−λ z y
1 −1− λ 0
−y −x −λ

∣∣∣∣∣∣ !
= 0

λ3 + λ2 + (y2 − z)︸ ︷︷ ︸
B

λ+ y(y + x)︸ ︷︷ ︸
C

= 0

At the �xed points, it is clear that A = 1, B = 1, C = 2, meaning that C > AB. Thus,
by the information given in the question, the roots have positive real parts. This means
that the points are all unstable, though the exact behaviour is determined from the sign
and magnitude of the imaginary part (if it exists).

Consider a volume element

δV = δxδyδz

Then, clearly,

δV̇

δV
=
δẋ

δx
+
δẏ

δy
+
δż

δz
≈ ∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= ∇ · u

38

Preview from Notesale.co.uk

Page 38 of 51


