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(a) (b)

Figure 2.1: (a) An approximate form of the central potential U(r) (b) An approximate
form for the e�ective charge Zeff

where U(r) v 1/r.

Finding U(r) exactly is a task for recursive numerical methods, such as the Hartee method.
This involves the following steps:

1. Guess a form of the potential U(r)

2. Solve for the single electron wavefunctions φi(r)

3. Find the charge density ρ(r) = −
∑

i e |φi(r)|2

4. Find the resultant potential U(r)′ from the electric �eld E

One can then iterate steps 2 to 4 until a self-consistent solution is found. This can be
extended further by the Hartee-Fock method, which includes the e�ects of Pauli exclusion
principle in the algorithm. As a result, it generates a central potential that gives rise to
fully anti-symmetrised spatial wavefunctions.

2.1.2 Electronic Con�gurations

Each electron within an multiple electron atom has a particular n and ` associated with it;
m` makes no contribution to the energy. Electronic con�gurations are a way of specifying
these quantum numbers, notated as below.

The values of ` are denoted using spectroscopic notation. That is, we used the letters
s, p, d, f, . . . to refer to ` = 0, 1, 2, 3, . . . and so on. There is no particular logic behind why
this is the case; it is simply a notational convention, and one that has to be learnt.

Each energy orbital is degenerate in n and `; there are 2n2 states for each value of n (a
consequence of Pauli exclusion), and 2(2` + 1) for each value of `i (factor of two due to
spin degeneracy). It is important to remember that 0 ≤ `i ≤ n, and that the sum of the
number of electrons in all of the orbitals is equal to the atomic number Z (in the case of
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Figure 2.2: Notation for electronic con�gurations

neutral atoms). These can be useful consistency checks when constructing con�gurations.

The energy orbitals with the lowest energy will �ll up �rst, and for all elements up for
Argon (Ar), this corresponds to the orbitals with the lowest n. After Ar, we �nd that

Ar :1s22s22p63s23p6

K :1s22s22p63s23p6 4s

Ca :1s22s22p63s23p6 4s2

Sc :1s22s22p63s23p63d 4s2

and so on. Logically, we would expect the next orbital to be �lled in Potassium (K) to be
the 3d orbital. However, the fact that it has ` = 2 means that - on average - the electron
is localised further away from the nucleus, and so is partially screened from the nuclear
charge. This causes it to be higher in energy than the 4s state, an so it does not �ll up
next. For higher elements, the states become signi�cantly more complicated to deduce,
though it is not particularly crucial to be able to write down their electronic con�gurations;
rather, one should be able to extract information from a given electronic con�guration.

We note that full orbitals make no contribution to the overall angular momentum; this
is because they must have spherically symmetric electrostatic potentials, forcing ` = 0
(spherically symmetric states cannot have a non-zero value of `, as to do so would de�ne
a special spatial direction, creating a contradiction).

2.1.3 Alkali Atoms

The Akali metals are found in the �rst group of the periodic table, and have a single valence
electron that is responsible for all the system dynamics. As the electron core consists of
full shells, it makes no contribution to ` and s, as above. For example, consider Sodium
(Na, Z = 11):

Na : 1s22s22p6︸ ︷︷ ︸
core

n`︸︷︷︸
valence electron

(2.6)

The core has the same electronic con�guration as Neon (Ne), and one will often see the
con�guration in the �rst bracket simply replaced by '[Ne]' in shorthand notation. This
makes it explicit that Na is simply a Ne electron core with an extra valence electron.

This valence electron thus moves in a hydrogenic potential, as it is shielded by the inner
electrons most of the time. This means that for large `, we can write that Zeff v Z− (Z−
1) = 1. However, this approximation begins to break down for lower `, as the electron has
a higher probability of being found in locations close to the nucleus. We take account of
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3. Radiation

In this chapter, we will examine the theory behind transitions and radiation within atoms,
including

• Radiative Transitions

• Inner Shell Transitions

• Thermal Radiation

The previous two chapters was focussed mainly on outlining the various energy levels that
are present in the atom, given the perturbative level being considered. We are now going
to look at what happens when there are radiative transitions between these levels. This
is an important aspect to round o� our examination of the atom, as it is usually through
observing these transitions that we can make deductions about atomic structure.
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The energies of the X-ray transitions are then given by the di�erence in energy between
these two levels. For a transition n 7→ m, this is given by:

∆Enm =
1

2
µ(αc)2

(
(Z − σn)2

n2
− (Z − σm)2

m2

)
(3.27)

We can observe these transitions using (for example) X-ray spectroscopy, involving bom-
barding an sample of a particular element with high-energy electrons emitted from an
X-ray tube. This creates a continuous spectrum due to the Bremsstrahlung or breaking
radiation due to the deceleration of the tube electrons as they interact with the atomic
nuclei. There is a low-wavelength cut-o� that occurs where all the energy of the electron
is emitted as breaking radiation, bringing an end to the continuum. This means that the
Bremsstrahlung continuum is actually characteristic of the tube voltage, rather than the
speci�c element under study.

Superimposed on this continuum we have the characteristic X-rays emissions that corre-
spond to inner shell transitions, with energies given by (3.27). These usually come in
various groups that correspond to transitions to n = 1, 2, 3, . . . , known as the K-series,
L-series and M -series. One usually only observes three such series due to the fact that
transitions to n = 4 are often not energetic enough to create X-rays upon emission. Note
that the term primary electrons is sometimes used to refer to the electrons that are ionised
due to incoming radiation. The di�erence between their kinetic energy and the energy
of the incoming radiation gives the binding energies of the various energy levels. Pay at-
tention to selection rules when �nding the characteristic X-rays; some transitions are not
allowed!

Figure 3.2: An energy level diagram showing the various X-ray series, as well as the
individual lines (e.g. Kα,Kβ, . . . )

A X-ray tube operates with a tungsten target (Z = 74). As the tube voltage is increased,

three groups of lines appear. The �rst appears at a tube voltage of v 2.5 kV, with wave-

lengths around 0.65 nm. The second appears at v 12 kV, the wavelengths being around

0.13 nm. Estimate the tube voltage at which the �nal group appears, and the wavelength of
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We thus obtain the di�erential equation

u =
1

3
T
du

dT
− u

3
−→ 4u = T

du

dT
(3.45)

that we can solve to obtain u ∝ T 4. This means that incident power per unit area is given
by

P =
1

4
uc = σT 4 (3.46)

for some constant of proportionality σ that is known as the Stefan-Boltzmann constant.
However, in order to �nd an exact expression for σ, we need to investigate how our energy
is distributed in frequency space.

Plank distribution

The spectral energy density ρ(ω) is the energy density per unit volume, in the frequency
range [ω, ω + dω]. The photons in our gas have two possible polarisation states (s = ±1),
meaning that the density of states for such a system is given by

g(k)d3k = 2︸︷︷︸
polarisation states

V

(2π)3
4πk2dk =

V k2

π2
dk (3.47)

Using the dispersion relation ω = ck, this can be written as

g(ω)dω =
V

π2c3
ω2dω (3.48)

Assuming that the number of photons is large enough to approximate them as having a
continuous spectrum, we can adopt Bose-Einstein statistics to write the mean occupation
number for a particular state with energy ~ω as

n̄i =
1

eβ~ω − 1
(3.49)

where we have de�ned β ≡ kBT . The spectral energy density is thus given by

ρ(ω) = n̄ig(ω)~ω =
~

π2c3

ω3

eβ~ω − 1
(3.50)

This is known as the Plank distribution. We can then use this to �nd an expression for the
Stefan-Boltzmann constant:

u =

∫
dω ρ(ω) =

~
π2c3

∫ ∞
0

dω
ω3

eβ~ω − 1
=

~
π2c3

1

(~β)4

∫ ∞
0

dx
x3

ex − 1︸ ︷︷ ︸
π4/15

(3.51)

where we have made the substitution that x = β~ω. By comparison with (3.41), it is clear
that the Stefan-Boltzmann constant can be expressed as

σ =
π2k4

B

60~3c2
= 5.67× 10−8 Wm−2K−4 (3.52)

By letting ω = 2πc/λ, we can also write the spectral energy density in wavelength space
as

ρ(λ) =
8πhc

λ5

1

eβhc/λ − 1
(3.53)
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Since the electron angular momentum L precesses rapidly around the internuclear axis,
the only non-zero time-averaged component of L is Lz, meaning that

〈ψe|N · L |ψ〉 = 0 and 〈ψe|L2 |ψe〉 = 〈ψe|L2
z |ψe〉 = Λ2~2 (4.25)

This means that the rotational energy term becomes

〈ψe|N2 |ψe〉
2µR2

=
~2

2µR2

[
K(K + 1)− Λ2

]
(4.26)

Now, since Ee(R) is spherically symmetric, we can write the molecular wavefunction in the
form

〈x|ψn〉 = ψn(R) = ψvib(R)ψrot(Θ,Φ) (4.27)

where Θ and Φ are the angular coordinates associated with lab coordinate system, rather
than the body centred coordinate system used to solve (4.19). In a similar fashion to
section 1.1.1, we can separate the angular and radial equations, noting now that

K2ψrot(Θ,Φ) = K(K + 1)~2 ψrot(Θ,Φ) (4.28)

Kzψrot(Θ,Φ) = MK~ ψrot(Θ,Φ) (4.29)

It thus follows that we can write[
− ~2

2µ

∂2

∂R2
+ Ve�(R)

]
ψvib(R) = Eψvib(R) (4.30)

where

Ve�(R) = Ee(R) +

[
K(K + 1)− Λ2

]
~2

2µR2
(4.31)

is the e�ective potential for this one-dimensional Schrödinger equation.

The E�ective Potential

For any bound state, we can expand Ee(R) around its minimum value R0:

Ee(R) = Ee(R0) +
���������dEe
dR

∣∣∣∣
R0

(R−R0) +
1

2!

d2Ee
dR2

∣∣∣∣
R0

(R−R0)2 + . . . (4.32)

The second term is zero by de�nition of the minimum. Letting

Ks =
d2Ee
dR2

∣∣∣∣
R0

and Br =
~2

2µR2
0

=
~2

2IM
(4.33)

we can approximate the value of the e�ective potential around the equilibrium value R0 as

Ve�(R) v Ee(R0) +BrK(K + 1) +
1

2
Ks(R−R0)2 (4.34)

where we have absorbed the Λ2~2/2µR2
0 term into Ee(R0). It thus becomes clear that Ve�

has the form of a harmonic potential raised by a constant energy Ee(R0) +BrK(K+ 1)~2.
Thus, the eigenvalue solution to (4.30) is given by

E = Ee(R0) +

(
ν +

1

2

)
~ωvib +BrK(K + 1), ωvib =

(
Ks

µ

)1/2

(4.35)
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can evaluate the electronic integral around R = R0. Then:

D21 v
∫
dτe ψ

∗
e(ri,R0)Dψe′(ri,R0)︸ ︷︷ ︸
electronic, Ie

∫
dR ψ∗vib(R)ψvib′︸ ︷︷ ︸
vibrational, Ivib

(4.45)

×
∫
dΘdΦ sin Θ ψ∗rot(Θ,Φ)D · Êψrot′(Θ,Φ)︸ ︷︷ ︸

rotational, Irot

We can use this expression to motivate the selection rules associated with molecular tran-
sitions. Evidently, if any part of this integral evaluates to zero, then the transition is
forbidden under the electric dipole approximation.

Transitions with no change of electronic states

Transitions of this type are only involved in heteronuclear molecules, since for homonuclear
molecules the Ie is zero as Dn = 0 as R1 = −R2, and De makes no contribution to the
integral as it is of de�nite parity.

If the Born-Oppenheimer approximation holds rigorously, then transitions involving a
change in both the rotational and vibrational quantum numbers is forbidden, since within
a given electronic state, the vibrational wavefunctions are zero, forcing Ivib = 0. However,
in practise, Ie is not independent of R; if on expands the integral around R = R0, an
extra term is introduced. This gives rise to the selection rules:

|K −K ′| ≤ 1 except |K −K ′| 6= 0 for Λ = Λ′ = 0

|ν − ν ′| = 1

(4.46)

(4.47)

Transitions with a change of electronic state

If the transition involves a change in electronic state, then Ie can be nonzero for both
homonuclear and heteronuclear molecules, as the wavefunctions ψe(ri,R0) and ψe′(ri,R0)
will be distinct. In this case, we retain the selection rules above, except now we have the
additional rules:

|S − S′| = 0

|Λ− Λ′| ≤ 1

Σ± → Σ±

g → u

(4.48)

(4.49)

(4.50)

(4.51)

where the last two apply to Σ states and homonuclear molecules respectively. It is clear
that the symmetry associated with Σ cannot change under a transition, while homonuclear
molecules must undergo a parity inversion.
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4.2.3 Rabi Oscillations

You can have Rabbi oscillations, but that requires two Jews and a see-saw

- Professor Simon Hooker

The term Rabi oscillations (pronounced "rah-bee") is used to refer to the oscillation of
the atomic population between the two levels of a two-level system at some characteristic
frequency. Let us label our eigenstates of our two-level system by |1〉 and |2〉. Suppose
that monochromatic light of amplitude E0 and frequency ω is incident on the atom, such
that we can write a time-dependent perturbation

δH(t) = ex ·E0 cosωt (4.64)

We can the write the overall state of our system as

|ψ, t〉 = c1e
−iE1t/~ |1〉+ c2e

−iE2t/~ |2〉 (4.65)

where the time evolution of the coe�cients amplitudes c1 and c2 are given by (3.4)

ċ2 = − i
~
〈2| δH |1〉 c1e

iω0t, ċ1 = − i
~
〈1| δH |2〉 c2e

−iω0t (4.66)

where ω0 = ω21. Let δHij represent the entries of the matrix corresponding to the per-
turbation δH. If we assume δH is real - which is a valid thing to do as it represents
a measurable quantity - then it is clear that the matrix must be Hermitian, such that
δH∗12 = δH21 −→ δH12 = δH21. The fact that δH11 = δH22 = 0 follows from the fact that
x has odd parity, while our basis states |1〉 and |2〉 are of even parity, forcing the matrix
elements to be zero. We can thus write our matrix element as

δH12 =
~Ω

2

(
eiωt + e−iωt

)
for Ω =

1

~
〈1| ex ·E0 |2〉 (4.67)

The quantity Ω is the Rabi frequency that is associated with the oscillations; it is clear
that this increases with the strength of the electric �eld. This allows us to write the time
evolution of c2 as

ċ2 = − iΩ
2
c1

(
ei(ω+ω0)t + ei(ω0−ω)t

)
(4.68)

We now make what is known as the rotating wave approximation, by assuming that the
frequency of the electric �eld perturbation is close to the atomic resonance ω0. That is,
ω = ω0 + δω, where δω � ω0. Then, we have that

|ω − ω0| � ω0 and ω + ω0 v 2ω0 (4.69)

This means that we can ignore the fast oscillating term ω + ω0 in comparison to ω − ω0,
as the oscillations associated with the former will average to zero over the time scales
associated with the latter. Thus, neglecting the ω + ω0 terms in (4.66), we can write

ċ2 = − iΩ
2
c1e
−iδωt, ċ1 = − iΩ

2
c2e

iδωt (4.70)

Recalling the fact that both the exponential factor and the coe�cients are time dependent,
we can solve this coupled system to obtain a second order di�erential equation for c2 (or
alternatively c1):

c̈2 − iδω ċ2 +

∣∣∣∣Ω2
∣∣∣∣2 c2 = 0 (4.71)
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4.3.3 Line Broadening and the Einstein Coe�cients

Now that we have made the admission that our transition frequency is not in fact a delta
function, let us look at the e�ect that this has on our Einstein coe�cients. Once again, we
look at the three di�erent processes, assuming that they are all homogeneously broadened:

• Spontaneous emission - The rate per unit volume, in the frequency range [ω, ω+dω],
at which this spontaneous decay occurs can be written as n2A21gA(ω−ω0)dω, where
gA(ω − ω0) is the lineshape for spontaneous emission

• Absorption - The rate per unit volume, in the frequency range [ω, ω + dω], at which
this excitation occurs is given by n1B12gB(ω−ω0)ρ(ω21)dω, where gB(ω−ω0) is the
lineshape for absorption.

• Stimulated emission - The rate at which this occurs is given by n2B21gB′(ω −
ω0)ρ(ω21)dω, where ρ(ω21) is as before, where gB′(ω − ω0) is the lineshape for ab-
sorption.

Note that we have assumed that the lineshapes for each of the transitions are distinct. But
how are they related? We can follow an identical method used in section 4.2.1 for a system
in thermal equilibrium to show that

g1B12gB(ω − ω0) = g2B21gB′(ω − ω0) (4.89)

A21gA(ω − ω)) =
~ω3

0

π2c3
B21gB′(ω − ω0) (4.90)

As these expressions must be hold for all possible functions, it immediately follows from
comparison with (4.55) that gA(ω − ω0) = gB(ω − ω0) = gB′(ω − ω0). Thus, all of the
transition types have a lineshape that is equal to some homogeneous lineshape function
gH(ω − ω0).

57

Preview from Notesale.co.uk

Page 58 of 67



Toby Adkins B3

For narrow band radiation, the gain cross-section varies slowly over the spectral width of
the radiation, and so I(ω) acts as I(ω) = IT δ(ω − ωL), where ωL is the central frequency
of the beam, and IT is the total intensity de�ned as

IT (z) =

∫ ∞
0

dω I(ω, z) (4.106)

It follows that
dn2

dt
= R2 − n∗σ21(ωL − ω0)

IT
~ωL

+ . . . (4.107)

We can think of n∗ as being the e�ective number density of the inverted atoms, and
σ21(ωL − ω0) as their e�ective cross-sectional area. Note that IT /~ωL is the incident pho-
ton �ux.

We have already derived (4.95) that describes the growth of each spectral component of a
beam. To describe the rate of growth of a beam of �nite spectral width, we integrate both
sides over the bandwidth of the beam:∫ ∞

0
dω

∂I

∂z
=

∂

∂z

∫ ∞
0

dω I(ω, z) =

∫ ∞
0

dω n∗σ21(ω − ω0)I(ω, z) (4.108)

For narrow band radiation, we once again assume Delta-function behaviour. Using (4.106),
we �nd that

dIT
dz

= n∗σ21(ωL − ω0)IT (4.109)

4.4.2 Gain Saturation

From now on, we shall adopt the notation I = IT unless stated otherwise. Let us now look
at the level populations of a laser operating under steady-state conditions in the presence of
an intense, narrow-band radiation. By analogy to (4.107), we can write the rate equations
as

dn2

dt
= R2 − n∗σ21(ωL − ω0)

I

~ωL
− n2

τ2
(4.110)

dn1

dt
= R1 + n∗σ21(ωL − ω0)

I

~ωL
+ n2A21 −

n1

τ1
(4.111)

We assume that R1 and R2 are constant, independent of n1 and n2, and include both direct
(collision excitation) and indirect (radiative pumping, or non-radiative cascades) processes.
Taking the steady state solutions of these equations, and eliminating n1 and n2, we obtain

n∗ =
R2τ2[1− (g2/g1)A21τ1]− (g2/g1)R1τ1

1 + σ21
IT
~ωL [τ2 + (g2/g1)τ1 − (g2/g1)A21τ1τ2]

(4.112)

Inspecting the above expression, it is clear that the denominator is equal to unity for I = 0,
meaning that the numerator must be the population inversion produced by the pumping
in the absence of the beam. We can thus re-write the above equation as

n∗(I) =
n∗(0)

1 + I/IS
(4.113)

We introduce the parameters

IS =
~ωL
σ21τR

, τR = τ2 +
g2

g1
τ1[1−A21τ2] (4.114)
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4.4.3 Beam Growth

Our intensity equation (4.109) states that

dI

dz
= αII =

α21

1 + I/Is
I (4.117)

which can be integrated to give

log

[
I(z)

I0

]
+
I(z)− I0

Is
= α21z (4.118)

This equation is transcendental, and does not have a general analytical solution. However,
we have the two limits that

I(z) = I0e
α21z for I(z)� Is (weak beam) (4.119)

I(z) = I0 + α21Isz for I0 � Is (heavy saturation) (4.120)

That is, at low intensities, the beam grows exponentially with distance, but once the
laser transition becomes heavily saturated, the intensity grows linearly. Note that we
can approximate τR v τ2 for predominantly radiative transitions (A21 v τ−1

2 ), and that
n∗ v n2 v R2τ2 for a short groundstate lifetime with upper level pumping rate R2. This
allows us to obtain approximate expressions for Is and α21.
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