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Toby Adkins B5

e Slow Motion - Objects move slowly compared to the speed of light, such that v < ¢,
or alternatively that cdt > dx', were the index i refers to the spatial components of
the metric (we shall adopt 7 and j for this purpose throughout the remainder of this
text). This means that in the Newtonian limit, 7 ~ ¢

e Slowly Varying Gravitational Fields - This means that any time derivatives of the
metric can be ignored

Applying this to the geodesic equation, the only component of the metric that we are
interested in is goo, such that the only affine connection that is non-vanishing is I'f:

d2zP o daxd
o + Iy <d7'> ~0 (1.38)

Using the fact that the gravitational field is roughly stationary, and (1.37), we can re-write

the connection as
e —lgp” 9900 777,;#0 Ohoo 1 0hoo
00 27 Qxt 2 ozt 2 OJxP
where we have made use of the fact that only spatial components of n°* remain, which are

equal to unity. Then, the geodesic equation becomes

B2z 1 /dz°\> oh d? 1 /dzO\?
e e

(1.39)

dr? OxP dr?2 2 \ dr
Comparing this with the Newtonian result d?x/dt?> = —V®, we see that in the Newtonian

limit ¥
2d 20
goo = — (1 + 2) ;oo = _72 e CO ‘u 1.41)

Note that for metrics containing ®(r T can be found by expand-
ing them for small ®. m 0 ’l ‘3
1.2.3 Time Dllam "(O /L 0“
We (ne\‘ ric ex& g @fo}

@ = goo C 2dt? + gijda’ ' da? (1.42)

where again the indices ¢ and j are used to refer to the spatial components of the metric.
Then, it is clear that the proper time, and the local inertial time are related by

i —1)2
dt 1 dz*do?
P <—900 - cggz’jdtdt> (1.43)

This is the analogue of time dilation in General Relativity. In particular, if the clock
measuring ¢ is at rest in the corresponding inertial frame, this becomes

dr (—g00)

Now, consider two observes A and B that are tangent to K° = (1,0,0,0), such that they
are both at rest in some frame. For each observer, it is clear that

dt = dra(—goo(A)™Y2, dt = drg(—goo(B))~/? (1.45)

This means that the observed frequencies are related by

(1.44)

vp  dra goo(A) Op — Dy
i — ~] - ——= 1.46
va drp goo(B) c? (1.46)

where we have assumed that we are in the Newtonian limit; we have thus obtained the
previous gravitational redshift result directly from the metric.
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special-relativistic equations that hold in the absence of gravitation, replace 7,, with g,,,
and promote all derivatives to covariant derivatives. The resulting equations will be gen-
erally covariant and true in the absence of gravitation, and therefore (according to the
principle of General Covariance), they will be true in the presence of gravitational fields,
provided that we always work on a spacetime scale sufficiently small compared with the
scale of variation of the gravitational field.

More on the Covariant Derivative

In a similar way to partial derivatives, we can also define the covariant divergence as
VUt =9,Ut + T, U” (1.55)
Recalling (1.25), we can write that

1 1
' = —9, = -0, log(— 1.
v 2gupa e 28 og(—9) (1.56)

where g is the determinant of g,,, which for diagonal metrics is simply the product of
entries. Though the above equation seems specific to diagonal metrics, it is in fact a
general result. Then, our covariant divergence becomes

VU = O (V=9U")

1
57
V=9 u\z
We can write a similar expression for the covariant d1vergenc§ ‘eegﬁ
VvV, T = e:; ’]I‘“p (1.58)

For an antlsymmetrl or &Qsé ter 835 t;l connection is symmetric in
its lower 1% make useg s e

Pargel Transport

ion in due course.

Given that U* = dz#/dr is a tangent vector to our spacetime coordinates, we define the
absolute derivative of another vector V# along a path x#(7) as
Dv?r D

M o= P AT — 1.
5 = UMV, = VyVe, om = UMY, = Ty (1.59)

We say that the vector V¥ undergoes parallel transport when moving along this curve in
the case that D/D7 = 0. For example, a vector may always point along e, as we move it
in the zy plane, but its corresponding r and # components will constantly have to change
to keep this true. This is embodied in the parallel transport condition. Now, if we apply
this to the tangent vector U, then we have that
U*v ,Uf = U (9,U° + T U”——DUp—o 1.60
K - ( H + ju% ) - Dr - ( : )
by the definition of U#. However, we can recognise the second expression as the geodesic
equation; this means that an alternative way of writing it is

o
UPV,UP =0, UP = % (1.61)
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1.4 Einstein’s Field Equations

We spent the last section investigating how to formalise the way in which spacetime curves
through the Riemann curvature tensor. However, we have not yet outlined how this cur-
vature relates to the presence of mass. This relationship is embodied in the Einstein field
equations, which we will now seek to derive using this vast theoretical apparatus that we
have constructed.

As previously suggested, the source term for gravitation in General Relativity is the stress
energy tensor TH”. Now, we must relate curvature to this in a way that means that the
conservation condition T!; = 0 is still satisfied. We already have a neat form for this given
by (1.98). We thus propose the solution of the form

1
RM — ig’WR = 1T + cogh” (1.110)

for constants ¢; and cs. We can determine these constants by looking at the Newtonian
limit of this equation. Once again, the dominant terms are T% = pc? and ¢°, and we can
use the weak field condition (1.37) to write that

1
L%y = 50" (Oohyw + Oyl — Ouhov) (1.111)

1
Rp;wu = 577‘”\((9“30}1”,\ + 0u0xhpy — O\Oghyy — auayhp)\) (1.112)

1
Ry = 0 0uOphun + Oudhpy — 03phyus — 8,0uhy O ,\“"13)

To find ¢1, we focus on the R% component of the %éﬁ@p\%s‘uming the fields are

slowly varying, such that all time derivatiygs @ vanish, meaning that we are
left with m X 1’(7%
Noo‘%(—g}\ Lhoo = —g)vzi@i — 2 (1.114)
. C
where W@W@u e of gl.a$h6L61 scalar, we let co = 0, and assume that
R

Tijg ce again the ponent is dominant), such that

1 1
i = igin = 5(5in (1.115)
Then, the Ricci scalar is
3
R= Q#VR;W ~ U“VRW, = —Ropo+ Ri; = —Rgo + QR — R =2Ry (1.116)

This means that the timelike component of the field equation becomes
pct
2Ro0 = 1Top — V@ = 15" (1.117)
Comparison with V2® = 47Gp means that our constant ¢; = 87G/ct. Tt is convention

to define ¢ = —A, known as the cosmological constant. Finally, we have arrived at the
Einstein field equations:

_ 8nG

G"
oA

1
TH — Ag", GM =R~ g"R (1.118)

where we have introduced the field tensor G*¥. The field equations completely encapsulate
the interaction between matter and spacetime curvature, and vice-versa. In essence, it
describes how "space tells matter how to move, and matter tells space how to move", in a
beautiful summary of the non-linear theory that is General Relativity

19
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2.1 The Schwarzchild Solution

Let us re-write the field equation in terms of the source term TH:

1
RM — %S“” Agh”, SM = (T‘“’ - 29WT> (2.1)
ct

where T' = T/,. We shall assume that we are in a vacuum far from source terms (S = 0),
and shall ignore the cosmological constant factor A (as this only becomes relevant when
working on cosmological scales, as in chapter 4). This means that our curvature is described
by the vacuum field equation:

R,, =0 (2.2)

Suppose that we want to find a spherically symmetric metric that satisfies the above
equation vacuum equation, and is asymptotically flat as r — oo. We thus propose a
diagonal metric of the form

— c2dr* = —B(r,t)c*dt* + A(r,t)dr?® + r*d6* + r* sin® 0d¢? (2.3)

where A and B are arbitrary functions of r and . Now, in order to find functional forms
for A and B, we must impose the constraints given by the components of (2.2), for which
we need to find the Ricci tensor. Let us begin by computing all the non-zero components

of the affine connection using (1.25) and (1.26):

1
60 —59 6rgoo

1

s )
o e

' \N 9,
preV\e 5 a0e %

e .CO

22 ST

7"0 = 7974748097% = ﬂ (2'4)
1 1
o, = 59693r909 =
1
ngﬁ = 2g9 Orgpp = sinf cost
1
Fir - 2 ¢¢8Tg¢¢ =
1 cos 6
% = ——g%%0pguss =
o0 2g 09¢ sin 6
1 B
oo = 590050900 =35 (2.5)
1 B’
ro, = 59 00,900 = 9B
1 A
F(r]r = 590080.97"7" ~ 9B (26)

Note that we have used a dash to refer to a derivative with respect to r, while a dot indi-
cates a derivative with respect to t. Note that the only connections where a time derivative
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enters are (2.4), (2.5) and (2.6).

Using (1.25) and (1.26), we can write the Ricci tensor (1.89) in the useful form

1
Ry = 50,0, 10g(—g) — 0%, + T,10, = o WaA log(—g) (2.7)
where as usual g = —ABr*sin® 6 is the determinant of guv- Plugging the affine connections

into this (the algebra is left as an exercise for the reader; had to get that phrase in here
somewhere), we find that

W= "94""44a|B " A A" 2|A A2 T 2AB " 24AB " 242 " 24B
(2.8)
g, B _aB B2 oa a[d (i B\ ip B 29)
" 9B 4AB 4B? rA 2|2B\A B AB = 2B2 ’
A
L= 2.1
Ry 24 (2.10)
Rog = Rop = Ryp = Rrg =0 (2.11)

Note that we have not evaluated Rgpp and Ry as these do not actually provide constraints
on A or B. This could have been guessed at by the form of the metric (2.3). Now, all of
these terms have to be identically zero according to (2.2). This immediately 1“\@@&
A= 0, such that Rgg and R, become CO

B B’ B A e .
i g (8w

Now, consld @Wg Combmagaé AZ'B @!‘gz (2.13)
P( g 1 ( " Bl) - (2.14)

A rA\A4A B

The remaining term involving time derivatives of B has vanished. This equation implies
that

Rog = (2.12)

AB = constant = 1 (2.15)

where the constant has been fixed by arguing that both A and B should return to their
Minkowski values as r — co. As B = A~!, this further means that B must also be inde-
pendent of time. This is statement of Birkhoff’s theorem: that any spherically symmetric
solution of the vacuum field equation (2.2) must be static, and asymptotically flat. This is
interesting; even when we introduced a possible time dependence into our metric, we were
forced by the nature of the equations describing spacetime to abandon it!

The condition Rgy = 0 now gives us that
2B’
B"+=—=0 (2.16)
T
meaning that B is a linear combination of a constant and another constant times 1/r.

However, we have the additional constraint that B must approach the Newtonian limit
(1.41) for r — oo. This leads us to conclude that

26M ) (2.17)

B(r)=1- 2 A(r) = (1 R
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2.2 Orbits around a Point Mass

Now that we have an explicit metric to work with, we can begin investigating how objects
move within said metric. In most cases, we will be considering the trajectories of light
objects moving in the gravitational field of much larger objects, such as stars or black
holes.

2.2.1 Classical Orbits

Before tackling the problem of orbits in the Schwarzchild metric, let us refresh our knowl-
edge of classical orbits. Recall the classical orbit equation

Ldr\* 2 GM _
2 \ dt 272 ro

&o (2.24)

which we can derive from energy conservation considerations. J = r2d¢/dt is the (constant)
angular momentum per unit mass of the orbiting body, while &y is some constant energy
corresponding to the initial kinetic energy per unit mass of the orbiting body. We can then
write that

dr  drde T dr oM g2
e S O 7 ¥ N el 2.25
dt  d¢dt r?2de [ o+ r 7”2} (2:25)
We can then integrate both sides of this equation:
J 1
:tgb:/dr 12:/du i .26)
T A T SO Ry

The second expression follows from making the us_te% n u = r~'. With some

re-arrangement, this becomes a recognisabl@N

o= [d 2.27
t\ G2 M2 28 | G2M?2 1/2 ( )
prev pe9 o
meanting that we can write this as
GM  GM 2672\ /*

Defining the elliptical eccentricity e, we can recover the solution for r in terms of constants
of the motion, and the phase angle ¢ = Qt.

J? 26072\ "/’
T_GM(l—i—ecosqb)’ = <1+G2M2) (229)

Note that we often define the latus-rectum ¢ such that
/ / !/

= — = _ = 2
" 1+ecoso’ T ire T 1—e (2.:30)
Then, supposing that the semi-major axis of the ellipse is a, it follows that
1
a= §(r+ +r.) — L=a(l—¢%), J=[GMa(l-e*)]"? (2.31)

This means that we can write the rate of change of ¢ in terms of constants of the motion,
and r:

dp J [GMa(1 —e?))/?
=25 - = (2.32)
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We shall move back to the Schwarzchild metric to tackle this problem. For simplicity,
assume that the orbit of the gas is circular. A distant observer with coordinate time ¢ will
observe the rotating gas moving with a velocity

v=r— =0/ =— (2.69)

where we have made use of (2.45). Then, the local Doppler frequency shift due to this
motion is given by
W cto

o 2.70
We cFv ( )

where w, is the frequency observed at some radius r near the black hole, and w, is the
emitted frequency of the radiation in the rest frame of the source. The positive and negative
signs correspond to matter moving towards and away from the observer along the line of
sight. For light, the (normalised) tangent to the null geodesic is given by

= (1 _ 7)7 2 1,0,0,0) (2.71)

as KY = 9/0t is Killing in Schwarzchild. Let P* be the four-momentum of the emitted
radiation. Then, we can write the invariant quantity

P UM = (1 = 7) 2 po 72)

From this, it clearly follows that \e CO *

Qﬁ@{es (2.73)
“‘i ’lan equation for the relation-

e of the gas located at some radius r,
the black hole:

ship between_t v emltted in

and?a((@ By a dlSt@ aa r

Woo rs\ [ 1£/rs/2r 12
= [(1 - 7) (M)] (2.74)

where again the positive and negative signs correspond to matter moving towards and away
from the observer along the line of sight. It is then easy to show that the line broadening

is given by "
Aw 1/2 -
=2 (1 - ) <T - 1) (2.75)

Suppose that the gas is located at the minimum stable circular orbit, so r = 3r;, and thus
Aw/we = (8/15)1/2. The broadening is thus comparable to the emitted frequency close to
the black hole.

where wyo is the freque C \Qa r— %
rom
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It is clear that this reduces to (3.71) in the limit that e — 0. The advantage of this result
is that it is applicable to all types of orbits, even very eccentric ones. For example, we can
consider a single parabolic encounter between two massive bodies. Such a scattering event
corresponds to e — 1 in such a way that £ = a(1 — €?) = a(1 — e)(1 + €) remains finite.
The distance of closest approach is given by b = a(1 — €), while the period of the orbit is

given by
a2
T=2m\| — .82
W\/GM (3.82)

The total gravitational energy emitted in the encounter is given by
AFEgy = 1lim T (Lew) (3.83)
e—1
which is give explicitly by

84v/21 G72m3m3(my + my)
24 c5b7/2

AEcy = (3.84)

Limits on Gravitational Radiation

According to Hawking (1971), when two black holes of masses m; and mg collide to form a
single large black hole of mass M, the total area of the event horizon must increase. This
is due to causality arguments. We know from our work with null radial geodesics in section
2.3.2 that points inside Schwarzchild radii of the original two black holes cannot lie outside

of the Schwarzchild radius of the final black hole, as otherwise this would corre d to
the propagation of something outwards across the event horizon. One q t this
gcn ust increase.

places the constraint on the merger that the total area of thegr‘\

We know that the invariant volume is give O‘—e
g dy = gi @%@7 3 (3.85)

Let us adoptwg thﬂ metric ( hat g = —c?r*sin? 6. Then, the surface

are?v r space 1@@8’@

dS = 8,0,\/—g d*x (3.86)
where

_ 1 _
Oh=— 8, O =(1—rs/r)V%, 3.87
t C(l — TS/T)l/Z ts ( r /T> ( )

are the normalised tangent vectors in Schwarzchild geometry. This evaluates to
dS = r*sin 0dOd¢ (3.88)

We could have immediately deduced this from the fact that the metric is spherically sym-
metric, but we have shown this method here as it is easily generalised. From this, it is
clear that the area of the event horizon is given by

A = 4mr? (3.89)

We must have that the final area is greater than the initial area, giving us the following
constraint on the masses

M > (m2+m2)"? (3.90)

It follows that the upper limit on the energy that can be emitted as gravitational radiation
in such a black hole merger is

2

AEgw/c* <mi+mo — (mi + m%)l/2 (3.91)
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4.2 The Friedmann Equations

Now that we have a metric to describe the universe, we can in principle solve the field
equations (1.118), which we shall now do. Unlike with the Schwarzchild solution, we shall
retain the cosmological constant A, as this is important on cosmological scales.

4.2.1 The Friedmann Solution

Recall that the components of the FRW metric are

CL2 2

goo =—1, gpr = 12 goo = CL2T2, Jop = @ r?sin? @ (4.27)

Adopting the notation a = da/dt, the non-zero components of the affine connection are

1 aa
0 _ 00 _
Lo = =39 %09 = - kr?
1
Igy = —=9"00gp9 = aar®

2
1
FSSqS = —§g0°aog¢¢ = aar?sin? 6

1
59 = —59”@990 = (1 — kr? )

1
b = —597’7"8Tg¢¢ = —7(1 — kr?)sin ‘ CO

ré __lp e¢¢N 6 cogd
ﬂgﬁ‘ 50 0

- 6W3¢ ; oy
eV\eT 530

uk

Py

P a

or =Lop = ngs—*
1
rre_rfd):f

Then, using (2.7), the components of the Ricci tensor are
Roo = —39, Rij = (éia + 262 + Qk)gij (4.28)
a

with the Ricci scalar being
6
R = —5(da+ a* + k) (4.29)

We note that the curvature along ¢t = constant slices in the space is R = 6k/a?, which
is consistent with either flat, positively or negatively curved space for £k = 0, k = 1, and
k = —1 respectively.

Fluid Conservation

The universe is evidently not empty (or else how would this author be sitting here writing
this?), so we are not interested in vacuum solutions to the fields equations. The assumptions
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matter-dominated
radiation-dominated -------

Figure 4.2: A plot of the scale factor (vertical axis) against time (horizontal axis) for the
matter dominated and radiation dominated cases of an open universe

Closed Universes

For closed universes, k = 1, < 0. We again consider two special cases:

e Matter dominated (Q,,): \(
.CO-

1 1
dt = /da = 4.80
/ Hy a[Qma=3 + Qka_Q]I/2 éé M a1 —1)1/2 (450)

where I, is defined as before. ded the d%e value, as by definition
Qy; is negative for clos TT@ smg conf tirfe:

é@‘@ m@ sin~! (W) +g (4.81)

such that

2a — |Imk‘ — gin (
|Imk|

Using the fact that dt = adn,

1
n—3)=—cosn — alt)=3|Lul(1—cosn)  (4:82)

1 1 .
t= [dna= Ll [ dn@—cosn) = § il (n=sinm) (45)

This means that the scale factor for a closed, matter dominated universe is given by
the parametric equations

1 1 .
a(t) = 5 sl (1= cosm), ¢ =5 Ll (n—sinm). =" (484)

e Radiation dominated (£2,):

1 1 1
dt = /da :/da 4.85
/ Hy a [0t + Qpa—2)"/? (L) a=2 — 1]*/2 (455)

where I, is defined as before. Using the conformal time, we have that

—an-l (%
/ /da’ k|—a21/2 — 1n=sin <|Ivk‘> (4.86)
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Beyond Equilibrium

Let use consider what is occurring when these two species are converting into one another.
The reaction can be categorised by some rate I', and it must compete against the expansion
of the universe, with which we can associated the rate H = a/a. The relative sizes of
I' and H dictate how important the reactions are in keeping the neutrons and protons
equilibrated. One can write down a Boltzmann distribution for the comoving neutron
number N,,, which is simply the number of neutrons within a comoving volume. This is

given by

dlog N, r N 2

—=——= |1 - = 4.120
dloga H [ ( N, > ( )

where N4 = a3n;d is the equilibrium expression above. If I' > H, then we have that
N, ~ Np%, meaning that we can indeed use the equilibrium value predicted by (4.119).
However, if I' <« H, then the expansion of the universe will dominate, and inhibit the
depletion or creation of neutrons by that reaction. The equation is then

dlog N,

4.121
dloga ( )

meaning that the comoving neutron number is frozen out (and the number density will
decay as a=3). Evidently, the transition between the regimes occurs at I' ~ H, and will
depend on how I' depends on temperature and masses. It turns out that for this r iom,
kpTy ~ 0.8 MeV. This means that the relative number density of neutron %ﬂl
be frozen in at nyp!/nyt ~ 1/6. However, we observe somethin @se t 7‘due to the
finite decay time of the neutron. \

We can use a very simple argument ctlon -11% verses hydrogen in our
universe. We initially have .gg s and ut hen we need to pair up
cing the nu aired protons to 6/8 ~ 75%. We

the protons and g)
thuﬁ*@ ‘ ughl}ﬁ 3@ ass in ehum and 75% in hydrogen.
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