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Without loss of generality, we can consider the magnetic field to be orientated along e,.
Then, using the method of cofactors, we can invert the matrix p to find the conductivity
matrix 0 = p~! as
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where o0 is defined as above, and w, is the familiar cyclotron frequency.

The Hall Effect

The Hall effect is the production of a voltage or potential difference across a conductor
when a magnetic field is applied in a direction perpendicular to the flow of current. An
experimental set-up used to investigate this is shown in figure 1.2.
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Figure 1.2: A schematic diagram of the experimental set-up used to investigate the Hall
effect

We define the Hall coefficient Ry and Hall voltage Vi as
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where t is the thickness of the sample in the direction parallel to the magnetic field. This
means that by measuring the F, that results from the application of j, and B, the charge
carrier density n can unlikely be determined from the Hall coefficient. However, this can
often prove experimentally difficult for a number of reasons:

e Thermal fluctuations within the material may generate small EMF’s, creating cur-
rents that effect the reading of the Hall voltage as its magnitude is comparable with
the scale of these fluctuations

e The magnetic field needs to be calibrated properly to ensure that it is uniform
throughout the sample

e The contact pins used to connect the voltmeter circuit to the conductor have a finite
resistance, which provides an offset error in the data that needs to be accounted for
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e The contact pins must be properly aligned, such that they are indeed measuring E,/,
instead of some perpendicular component of the voltage. This can be done through
multiple measurements of moving one contact, which will cause the measured voltage
to fluctuate around some value

Often, the Hall coefficient is measured experimentally to have the opposite sign to that
expected from the above analysis. This indicates the presence of positive charge carriers
that are not included in Drude theory. The nature of these charge carries will be revealed
in section 3.3.

Thermal Transport
Recall the expression for the thermal conductivity of a kinetic gas:

1
K= gncy (v) A (1.60)
where ¢, is the heat capacity per particle, (v) is some mean velocity, and A = (v) 7 the

mean-free path. Assuming that
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the thermal conductivity can be written as
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While this quantity still has the unknown sc @%@ T in it, it also occurs in
the electrical conductivity og in :ﬁ Il Ccon the ratio of the thermal

as the L

conductivity to electrical co

Thigsult appears to diﬂ’egm experiment by only a factor of order unity. This is quite
astounding that this theory should predict the correct order of magnitude considering that
it is a purely kinetic theory. It turns out that this is due to the fact that we have hugely over-
estimated the heat capacity per electron, but hugely underestimated the typical velocities
of electrons (see (1.73)); these two errors roughly cancel one another out.

4k3 92&’() 8 Watt Ohm K2 (1.63)
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1.3.2 Sommerfeld Theory

Sommerfeld theory treats the electrons within metals as a degenerate fermionic gas, such
that the mean occupation numbers will behave according to

n; =

1 {1 for E < pu(T = 0) (L64)

N _>
eBE=1) 41 0 for E> u(T =0)

This is shown in figure 1.3. This means that electrons will begin to ‘stack up’ and occupy
all the available single particle states from the lowest to some maximum energy at T' = 0.
We thus define the Fermi energy as

Ep = u(T =0) (1.65)

That is, the value of the chemical potential at T = 0, corresponding to the maximum
energy per particle at this temperature. Let us find an expression for the Fermi energy.
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3.1 Atomic Chains

In this section, we consider a detailed model of vibration in a solid by examining one-
dimensional atomic chains. In particular, we shall examine the behaviour of this system
in terms of normal modes (collective oscillations of the system in which all parts move
with the same frequency and fixed phase relation) and phonons (a discrete quantum of
vibration that can be described by Bose-Einstien statistics). We met the latter of these
when studying the Debye Model of heat capacity 1.2.3.

3.1.1 Monatomic Chain

Consider the case of a one-dimensional chain of N atoms of mass m, each connected by
classical springs of spring constant «, as in figure 3.1 below. Suppose that the atoms are
separated by an equilibrium distance a. This can be thought of as our lattice constant,
and the dotted box one possible unit cell for the system.
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Figure 3.1: A schematic diagram for a monatov‘ ha@O *

Let z,, be the position of the n-th atom, wic @Xg%ém has have ngq) = na. Then,

_‘( Om’&ég@o‘ ’l 0 (3.1)

Using NII onx ,‘@W’rite its e qN Q on as
Pxéxeyﬁkcsx — @ a{@ae;né = —
n = n+1 n n xn—l) = ’i(éﬂjn—i-l +0xp—1 2551371) (32)

where a dot denotes a derivative with respect to time. Our system is clearly periodic in a
in real space, meaning that our wave-like solution must also be periodic in 27 /a in k-space.
We thus consider a solution of the form

6y, = AelWi—kna) (3.3)

It is easy to verify that this is indeed invariant under the transformation k — k + 27 /a.

Dispersion Relation

Substituting the solution into (3.2), it follows quickly that the dispersion relation for the
monatomic chain is given by

ka

. K
sin —
2

, wo=4/— (3.4)

m

w = 2wy

Once again, we observe that this is 27/a periodic in k-space, meaning that the first Bril-
louin zone has boundaries [—7/a, 7 /a]. By definition, all physically distinct states of the
system must be contained within this range, and so the dispersion relation and any quan-
tities derived from it must have this periodicity.
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We now assume that the classical vibrations of our monatomic chain can be modelled as
lattice phonons that obey Bose-Einstein statistics. Then, we can write the energy as

2N [9m 1
U= /dw nig(w)hw = / dw o 1 (3.16)
T Jo
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The heat capacity is given by
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We can non-dimensionalise this integral using the usual substitution x = Shw, such that
2NkB Tm 2 et

™ 0 1/ —1’2 €$—1

In the high temperature limit, z, z,, < 1 meaning that the second fraction in the integrand
becomes approximately unity. This means that the heat capacity becomes Cyy = Nkp = R,
which is the law of Dulong-Petit in one dimension.

Cy =

(3.18)

3.1.2 Diatomic Chain

Let us now generalise the previous discussion above to systems containing more than one
type of atom. We shall consider the case where have a one-dimensional chain of N unit
cells of length a, containing two atoms of masses m; and mg, connected by a classical
spring of spring constant x. We shall label the atoms of mass m; by the positions ‘(and

the atoms of mass meo by y,, as shown in figure 3.4 below. O u
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Figure 3.4: A schematic diagram for a diatomic chain

As before, we can use NII to find the equations of motion for both species of masses:

my 0%y = K(0Yn—1 — 0xy) — k(0 — O0yn) = K(OYn—1 + dyn — 20xy,) (3.19)
ma 0in = K(0Zpt1 — 0Yn) — K(0Yn — 02y) = K(0Tp41 + 02y — 02yy) (3.20)
As before, we suppose that we have wave-like solutions of the form
by, = Agel@t=hna) (3.21)
Syn = Aye!@i=kna) (3.22)

Note that we have not assumed that the amplitudes of oscillation for each species is the
same (as it is indeed not). Substituting these solutions into the equations of motion yields

a matrix equation
2k — myw? —K (1 + eik“) A\
(—/i (1 + e_“m) 2k — maw? A, ) 0 (3.23)

For a solution to exist, we require that the determinant of the coefficient matrix is zero.
Performing this calculation gives the dispersion relation

11 11 2 12
wi=r < + > +k <2 +-—+ cos ka> (3.24)
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arises due to the fact that the electron has lower energy when confined to a larger area
(more orbitals). We thus want to find some Hamiltonian that satisfies

(n| H |n) = Ey (3.33)
(nx1|H|n)=—t (3.34)
We now assume that all of the states |n) are orthogonal, which corresponds to the electrons

being very tightly bound to the atoms, such that it has a very low probability of being on
any other site. With this assumption, it is clear that the correct Hamiltonian is given by

H =Y [(Eon)(n]) = t(n) (n = 1]+ |n) (n + 1) (3.35)

where the sum n runs over all of the atoms N. We can now look for solutions to the
Time Independent Schrédinger equation that are a superposition of all the possible orbital

states:
= onln) (3.36)

Then:
> (Eopn — tén-1 — téns1) [n) = B ¢ |n) (3.37)

n

As the states |n) are orthogonal, we can drop the summation notation, such tkat our

equation becomes:
E0¢n - t(bn—l - t¢n+1 E¢n \e CO \) 3 38

Motivated by Bloch’s theorem, let us use the wave @

£ Wo‘ 19 -

which upon subs-tlté ispersio

P | 6\’ P @@m (3.40)

Like in the case of the atomic chain model, the dispersion is periodic, and the Brillouin zone
is of the same width 27/a. Furthermore, this dispersion relation gives rise to an energy
band that comprises of the possible energy states at a given k, dictated by the amount of
orbital overlap (hopping). The width of this energy band (the bandwidth) is 4t.
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Figure 3.7: Energy dispersion for the tight-binding model with a single orbital per site
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Figure 3.8: Energy dispersion for the tight-binding model with two orbitals per site (E(’]B <
Eg)

3.2.3 The Nearly-Free Electron Model

As the same suggests, we are now going to look at the other extreme in which the electrons
are free to move throughout our lattice, but subject to some weak periodic potential V' (r),

such that the Hamiltonian of the system becomes:
: uk
p
H=_—+V Vv O (3.59)
o H V), V() \ e.C

Suppose that we initially have an 1nc1dent %%é form (r|k) = Ae’* for some
wavevector k. This will be scatter

(x|k') = Be . We ﬁ\ie OteAm : % e Qyive o wave of he fom
P ( e\, \e @7%@‘@ XN (G R) (3.60)

In order for the terms in this sum to be non-zero, we require that the Laue condition is
satisfied, meaning that k' = k + G. Thus, we can write the state of the system (in the
position representation) as:

(r|y) = Ae™™ + Be'&FOT |y = k) + |K') (3.61)

By (1.6), we want to calculate the matrix elements for our Hamiltonian. We define the
matrix elements

(k| H [k) = Eo(k) + Vo (3.62)
(K'|H|K') = Eo(kK') + Vo (3.63)
(k| H[K)=Viw=V.g=Vs (3.64)

meaning that our effective Schrodinger equation becomes:

(EO(k) 4‘;5‘/() o Ey(K) ZGVO - E> (ﬁ) =0 (3.65)

We shall now consider two particular cases of this expression, as the general case is not
particularly interesting or informative. Arguably, none of this is neither interesting nor
informative; such is Condensed Matter Physics at an undergraduate level.

47



Toby Adkins B6

At the Brillouin Zone Boundary

Suppose that we are on the Brillouin zone boundary. Then, k = k’, meaning that we can
solve (3.65) very simply to yield

h2|k|2

Ei(k) = 9

+ Vo £ |Vl (3.66)

where we have used the fact that Eg(k) is the expectation value of the kinetic energy. This
is graphed (in one dimension) in figure 3.9 below.
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Figure 3.9: Energy dispersion for the nearly free ele %@\&n the Brillouin zone
boundary é

Once again, the energy is & l®m ban WQ‘%‘ tgl@ap 2|Vg|. What is the
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We can also gain an understanding of how this band-gap originates. The two eigenstates
of the system (in the position representation) are

Va| ~ (3.67)

(rfk), [(r]k) + (r[K)] (3.68)

1

V2
Suppose that we are in the one-dimensional potential V(z) = Vp + Vg cos(2mx/a). Then,
the eigenstates become

T

(z|k), o< cos %E, (x|k)_ sin; (3.69)

Considering the probability densities |(z|k) i‘Q of both eigenstates, it is clear that (z|k)__
has its probability density concentrated at the maxima of V' (z), where as (x|k)_ has its
density concentrated at the minima of V' (). This gives rise to an energy difference between
the two states, as it raises the energy of one by Vi and lowers the energy of the other by
Va.
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Near the Brillouin Zone Boundary

We shall treat this situation in one-dimension. Near the Brillouin zone boundary, we let
the kinetic energies be

R? [/nm\2 2n7 9
Eo(k +ok) = - [(a> 5k+6k:] (3.70)
R? [/nm\2 2nm
/ 2
— 71
Eo(K + k) = 7~ [(a) 5k+6k] (3.71)
where we have let kK = nr/a and k' = —nz/a for some integer n. From (3.65), we have the
eigenvalue problem
(Eo(k) = E) (Eo(K) — E) — [Val* =0 (3.72)
Substituting the above relationships in, we find that
1/2
R? [ /nm K 2nm ok \°
Ey=—|(—) +6§| £ 1 3.73
=7 om [( a ) * ] Val |1+ <2m a \Vg|> (373)
We can now expand for 0k < k = nw/a, 0k < |Vg|, such that
R2ok? h?(nm/a)?
EL=FE (6k=0 1 (3.74)
+ = Bl ' o [ m|Vg| ]

where F1(dk = 0) is simply the energy corresponding to being exact& thﬁk&um
zone boundary, as given by (3.66). This can also be written é\

m N = ’( 0 (3.75)
where we hem/e\c,ileﬁé ;éi%s 60 O
preV™ palf

- m[Val
It is clear that the nearly free electron model predicts very similar behaviour to the tight-
binding model in terms of the energy dispersion; they predict the formation of discrete
energy bands, and the associated band gaps, when electrons are exposed to a periodic
potential. As such, we are inclined to think that real lattices - that can be characterised
by a periodic potential - also exhibit this behaviour.
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Figure 3.12: The Fermi surface for divalent atoms in a square lattice in the presence of a
moderate potential. The left- and right-hand sides correspond to the extended and reduced
zone schemes respectively

a band gap of more than this value, it appears transparent, since no single visible photon
can cause excitation to the conduction band. This means that there is no scattering of
electrons which causes opacity. This is the case with diamond, for example.

We also have to consider the way in which the electron transitions. Direct transitions
between the valence and conduction bands do not change the value of k, where as gngirect
transitions occur between the top of the valence band and the bottom of ﬁ%&
band, changing the value of k. The minimum energy transitgo I‘EC one
definition. However, photons alone cannot excite indirect ﬂ' as momentum is not
conserved. We still observe some electrons b 1@2@5 1s way, as lattice phonons
can re-distribute some of the moment & S

ot a @mmant effect due to the
poor coupling between phot?(a@ i
Note that comsletel es%%oulomb interaction between electrons,

? ct that the ass gy can be greater than the Fermi energy. However,
it tulns out that it is fine to*do this, for reasons that we shall not go into here. However,
this does cause band theory to fail in describing Mott insulators, materials where the
electron-electron repulsion is indeed a dominant effect, preventing our notional bands from
filling up easily.

3.3.3 Semiconductor Physics

As they are the most physically intriguing out of insulators, conductors, and semiconduc-
tors, we shall examine further the physics of the latter. We will not be covering semicon-
ducting devices, as these are non-examinable, and there are plenty of resources for further
reading in this area if the reader so desires.

Electrons and Holes

The general picture of a semiconductor is a material with a mostly-full valence band, and
a almost-empty conduction band, separated by a small band gap. As a result, it is conve-
nient to define a hole as the absence of an electron in the valence band. This is a useful
concept as we can characterise the motion of electrons in the conduction band as a flow of
positively charged holes in the valence band, as the valence band is itself inert. This leads
to the positively charged mass carriers that we mention in relation to the Hall effect. Note
that we generally refer to the density of electrons as n and the density of holes as p.
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Figure 4.1: Plotting the Brillouin function By(z) for J =1, J =2, J =3, J =5 and
J — oo

4.2.2 Larmor Diamagnetism

The only time we can ever observe diamagnetic is if J = 0, as otherwise it is co tely
overshadowed by Curie paramagnetism. This often occurs in atoms with ﬁ16 W 1ls,
such as the noble gases. Consider the dlamagnetlc term in (4. 7\ e C

5Hdiamagnet1c w@ 5 (4 25)
We again assume that B is_ﬁ a ng e, smﬁ‘&atq Qrder shift in the energy

can be V;‘ltén\is e\|5\E|dg w& %

As our atoms exhibit spheri

(z? +y?) (4.26)

| symmetry, we can use spatlal isotropy to write that
2
(@ +y%) = 3 (@ + 9y +2%) = 3 (r*) (4.27)

such that the energy shift becomes

e?B?
6 Edia, = 2 4.2
dia 12m, < > ( 8)
The magnetic moment m for each electron is then given by
a(sEdla 62 2
- _ = |- B 4.29
m 8B 6m3 " > ( )

Assuming that there is a density p = Zn of electrons within the system, we can write the
magnetic susceptibility as

Zne? g <r2>
6me

(4.30)

XLarmor = —

This accounts for the diamagnetic of electrons in core orbitals. For the conduction of elec-
trons in a metal, we need to consider the Landau-diamagnetism Xrandau = —XPauli/3 that
combines with the Pauli paramagnetism to reduce the total magnetism of the conduction
electrons by 1/3.
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