Problem 4: Find the current *i* and the voltage *v* across LED diode in the circuit shown on Fig. a) assuming that the diode characteristic is shown on Fig. b).

Modeling a piecewise characteristic of a device

Problem 6

Sketch the transfer characteristic (v_o versus v_{in}) for the circuit shown in the figure below. Assume that the diode is ideal.

Modeling a piecewise characteristic of a device

Problem 6

Add the voltage source.

Problem BJT P1: It has been found that in the circuit below $V_E = 1V$. If $V_{BE} = -0.6V$, determine: V_B , I_B , I_E , I_C , β , and α .

Problem BJT P2: - For the circuit below assume both transistors are **a)** I_{C1}, V_{C1}, silicon-based with β = 100. Determine: V_{CE1}. **b)** I_{C2}, V_{C2}, V_{CE2}.

Soln: •

Assume $V_{BE} = V_{BE1} = V_{BE2} = 0.7V$

Part (a): - Apply KVL along the path • (red line).

$$-30 + I_{B1} * R_{B1} + V_{BE1} = 0$$
$$I_{B1} = \frac{30 - 0.7}{750 * 10^3} = 39.07 \,\mu A$$
$$I_{C1} = \beta * I_{B1} = 3.907 \,\mu A$$

- Soln contd.: Find the Q-point if the current gain, $\beta_F = 125$. We have $R_C = 29.41 k\Omega$, and $R_B = 625 k\Omega$, from previous calculations.
- Apply KVL along the path (red line).

$$(I_{C} + I_{B})R_{C} + I_{B}R_{B} + V_{BE} = 1.5$$

$$(\beta I_{B} + I_{B})29.41k + I_{B}*625k = 0.85$$

$$(126*29.41k + 625k)I_{B} = 0.85$$

$$I_{B} = \frac{0.85}{4.331*10^{6}} = 0.196\mu A$$

$$I_{C} = \beta I_{B} = 125*0.196*10^{-6} = 24.53\mu A_{10}e.CO^{VLH}0.65V$$

$$= Preview from NoteSale.Co^{VLH}0.65V$$

Problem Logic Gates P3: - **b)** Find the minimum POS form of the function above and draw a logic circuit representing the same.

- Soln:-
- For minimum POS Minimize the logic function F' and take inverse. That is consider locations with zero (0) and then invert the result.

