- Freely diffusible gas that acts as a signalling molecule
- Very short half-life 6-30s = local activity
- Activity in blood limited by circulating haemoglobin α
- Prevents thrombosis inhibits platelets adhesion to vessels and activation
- Anti-inflammatory inhibits leukocyte adhesion and migration
- Antioxidant
- Inhibits smoot muscle cell proliferation and migration
- Atheroprotective

Relaxation of vascular smooth muscle (vSMC)

- Mechanism of vSMC relaxation
 - o cGMP reduces [Ca²⁺]
 - o regulates phosphodiesterase
 - Activates PKG → limit activation of myosin-light chain kinase (MLCK) essential for myosin-actin cross bridge formation \rightarrow smoot muscle relaxation

Prostacyclin synthesis

- Phosopholipase A2 activity leads to prostacyclin rate limiting step – activated by Ca²⁺ & PKC
- Cyclooxygenases
 - o COX-2 inducible
- Endothelial cells express prostacyclin synthase (PGCIS)
- Platelets use thromboxane synthase to produce thromboxane

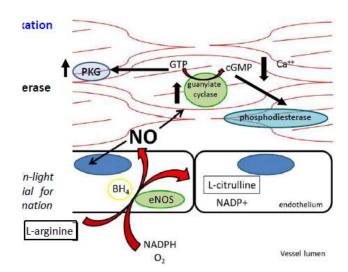
Prostacycline (PGI₂) and vSMC relaxation

Prostacyclin binds IP receptors (GPCRs)

Increasing (cAMR) Children PKA

Demands (Pan) Immiting vSMC (pan)

Endtothelium-derived hyperpolarising factors (EDHF)


- The phenomenon of endothelium-dependent hyperpolarisation and relaxation
- Ach stimulation of artery preparation in the presence of NO scavengers (e.g. haemoglobin) & COX inhibitors (indomethacin) indication an additional endothelial-dependent vasodilatory activity
- Small molecule with a short half-life
- EDHF effects are blocked with endothelial K⁺ (e.g. IKca²⁺) channel inhibitors
- EC become hyperpolarised and signal to vSMCs resulting in hyperpolarisation to produce vasodilation
- EC hyperpolarisation transmitted to myocytes via myo-endothelial gap junctions

OR

EDHF is K⁺ exciting EC through K⁺ channels to activate myocyte K⁺ channels & Na⁺/K⁺ ATPases

Endtothelium dysfunction/activation

- Shift in EC function to reduced vaasodilation & more pro-inflammatory & pro-thrombotic state
- Classically associated with reduced bioavailability of NO & reduced vasodilation
- Blood vessels may become damage and leaky with loss of EC

