L9 Neural Regulation of Blood Vessels

All blood vessels have symp \rightarrow constriction

Descending symp nerves have tonic excitatory activity = blood vessels are always slightly constricted (decreased activity \rightarrow dilation)

- Autonomic nerves use co-transmitters .
- Sympathetic vasoconstrictor: NAd, ATP + NPY (neuro peptide Y) •
- Sympathetic dilator:
 - ACh, + vasoactive intestinal peptide (VIP) + NO
 - Skin in some regions
- Parasympathetic cholinergic: ACh + VIP + NO
 - Cerebral, coronary, reproductive tissue

Arrangement of sympathetic nerve fibres

- Paravascular nerve bundles send out branches to form perivascular network with varicosities
- Perivascular nerve fibres are in adventitial-media border; don't enter the VSM
- Effect of nerve activity on VSM must be conducted from cell to cell

Varicosity

- Granular vesicles contain NA, ATP
- Large opaque vesicle contain NPY
- Sites of release of transmitters
- Release is "en passant"

Biosynthesis of NAd

- Mainly made in varicosity
- Tryrosine from the blood stream •
- Usually re-uptake to stop its effect
- Release of NAd De moation of action of NA
- Act mostly on α_1 receptors (sometimes on • α₂)
- Have pre-synaptic α_2 receptors helps control the release of NAd
- NAd can:
 - 0 Diffuse in to blood stream
 - **RE-UPTAKE** 0

 When action potential passes through varicosity as it travels through along nerve fibres
Increased Ca²⁺ leads to release a bit of NAd
thesis of NAd
inly made in varicosity
rosine from the blood stream
ually re-uptake to stop its effect NA Nerve Enzymes NA Vesicle activity DOPAMINE DOPA YROSINE RE-UPTAKE TYROSINE NA transporter (inhibited by desigramine, cocaine)

 α_1 receptors all along proximal arterioles (the bigger ones)

 α_2 receptors on distal arterioles – their constrictor influence is more easily blunted by local dilator influences (metabolites)

NAd binds to α_1 :

- 1. Can activate PLC and produce IP₃ \rightarrow binds to receptors on sarcoplasmic reticulum \rightarrow Ca²⁺ released \rightarrow increased $[Ca^{2+}] \rightarrow$ contraction of VSM
- 2. Open voltage gated channels on VSM \rightarrow depolarisation \rightarrow sarcoplasmic reticulum release Ca²⁺ NAd binds to α_2 :
 - 1. Closes K⁺ channels \rightarrow depolarisation \rightarrow more Ca²⁺ influx through voltage gated channels