-Easy to use, but can be challenging because of the significant variation that can exist within a species

-Individuals of the same species can exhibit variability in shape, size (males larger than females), eye color, and features (reproductive organs, male lions have manes and female lions don't)

Phylogenetic Species Concept:

Biologists can define "species" based on evolutionary relatedness between the among species (characteristics to group organisms)

Using Phylogeny:

-Modern biological classification systems are starting to rely more on evolutionary relatedness rather than morphology and reproduction
-DNA technology can now be used to identify species
-The closer the DNA= the more closely related organisms are

Evidence used to determine relatedness:

-Anatomical characteristics (anatomy) Ex) features that have a common evolutionary origin, comparing embryou -DNA Ex) 93% of human gene match with the macaque marker 18% match with chimpanzees

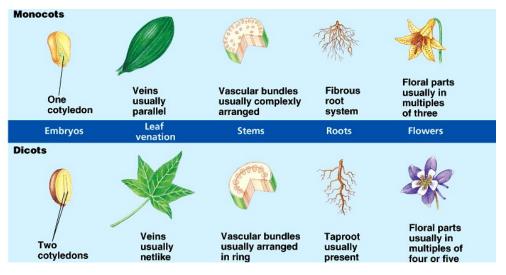
Why do we not always use the Phylogenetic Source

-Evolutionary hit ones are not known for all species

-Diment & obtain DNA sam les from extinct organisms

Phylogenetic tree:

-A branching diagram depicting evolutionary relatedness between different species or groups


-The base of the tree represents the oldest ancestral species, and upper ends represent more recent descendants

-A fork or node represents the points where an ancestral species split into two new species

-This point represents the most recent common ancestor of all descendants after it

Comparing Prokaryotic and Eukaryotic Cells:

	PROKARYOTE	EUKARYOTE
Meaning of name	Pro=before Karyon=nucleus	Eu=true Karyon=nucleus
Evolution of First	Appeared 3.5 billion years ago	Appeared 1.5 billion years

Photosynthesis:

Carbon Dioxide + Water + Light Energy \rightarrow Glucose + Oxygen -Occurs in the chloroplasts

-Converts solar energy into chemical potential energy

*Glucose must go through cellular respiration to be used

Cellular respiration:

m Notesale.co.uk Glucose + Oxygen \rightarrow Carbon dioxide + Water + usable energy (ATP) -Turns chemical potential energy into usable energy -Occurs in the mitochondria

Leaves:

Part	Stracture	Function
Blade Preview P	-Thin, flat, and broad	-Maximizes SA for light
Drevi D	🗩 t a nes to stem by	absorption
	petiole	-Increases SA for gas
	-Can be simple of	exchanges
	compound	-Allows for materials to
		travel in and out of stem
Veins	-Contains vascular tissue	-Transport sugar
	-Found in spongy	nutrients and water
	mesophyll	-Maximizes distribution to
		all leaf cells
Epidermis	-Covered by waxy cuticle	-Prevent water loss while
	-Do not contain	performing gas exchange
	chloroplasts	-Since its transparent,
	-Transparent	allows light to pass
		through
		-Protection against
		invaders
Mesophyll	-Palisade mesophyll is	-Tightly packed so
	elongated	maximizes light collection
	-Cells have many	for photosynthesis

barrier (Casparian strip)	
---------------------------	--

Mycorrhizae:

-Fungi and plant roots -Plant provides sugar for fungi

-Fungi increase surface area for more nutrients available for plants to absorb and release enzymes the plant can absorb

Solutions to adapt life on land:

Solutions to adapt life on land	What it's for
Waxy cuticle	-Waterproof coating
	-Blocks evaporation (prevents water loss
	from inside the plant)
	-Found in all land plants
Roots	-Obtain water for photosynthesis
	-Anchors the plant
	-Obtain nutrients the plant build t's
	body from
Stomata	-Gas exchange
	-Prevots ytter loss
	E und in all land plants
Leaves from preview page	-Large CA to ver me ratio
LOUN TO A	Nuntient absorption
e aview ae	-Obtains carbon dioxide from the
prev. pay	atmosphere through the stomata
Xylem and phloem	-Transport tissues
	-Xylem transport water
	-Phloem transport nutrients and sugar
Stems	-Contain xylem and phloem
	-Provides structural support
	-Resists gravity so the plant can grow
	-Herbaceous and woody stem
Seed	-Responsible for reproduction
	-Protects embryo from drying up
	-Gives embryo food until it can survive
	on its own
Flowers and fruits	-Found in angiosperms
	-Flowers: contain reproductive parts:
	pollen (male sex cell) and ovule
	-Fruits: protects the seed, allow it to be
	dispersed
	-Both increase survival success and
	reproduction (colors and nectar attract

• Rock layers contain fossils of many species that do not occur in layers above or below.

Charles Lyell (1797-1875):

-He developed the theory of uniformitarianism, which is that:

- The same processes in the past that are occurring now have changed Earth.
- Geological change is slow and gradual rather than fast and catastrophic.
- Natural laws that influence these changes are constant and eternal, and they operated in the past with the same intensity as they do today.

About Darwin:

-Age 22 -Studied religion in school -Sails from England in 1831 -Ship name: HMS Beagle -Traveled for 5 years

-Surect and log species (Naturalist) -Relates nature and religion -Thinks everything in nature has been nate by a creator -Thinks all species are imputable -Views species as parts of a living plan Sorth Acerca-Urugua 79 2008 -Looks for both 6

-Looks for both fossils and living animals

-All species found in South America are only found in South America and questions where new species came from

- -Discovers the bones of huge creatures
- -Found enormous creatures fossils that resembles an Armadillo and a sloth
- -Glyptdon: Ancestor of Armadillo
- -Megatherium: Ancestor of Sloth
- -Darwin noticed a relationship because these large fossils were the same structure of modern day animals (sloth and armadillo) and are found in the same area
- -Discovered a relationship between past and present species: One species changes overtime into another species

-Also says extinction is possible

Argentina (Patagonia):

-Treks cross-country with Gauchos (The local men)

-Stubbles across a small Reha

-Looks very similar to an ostrich and cant fly

-He is about to eat Reha and realizes he is eating something different than one he saw before

-The mix of partially digested food, water, and gastric juices entering the small intestine

Physical digestion: 3 layers of muscle contractions

Chemical digestion: gastric juices denature proteins; pepsin breaks down proteins into smaller parts

The pancreas:

-Chyme from stomach is very acidic and can easily destroy small intestine -To prevent this, the pancreas produces sodium bicarbonate (a base), which raises the pH of chyme from about 2.5-9

Digestive enzymes secreted from pancreas:

- 1) Lipase: breaks down triglycerides into glycerol and fatty acids which can enter the blood stream
- 2) Pancreatic amylase (same as Amylase): breaks down starch into maltose
- 3) Trypsin (same as pepsin): breaks down protein into smaller chains

-Produces bile (emulsifier), which is stored in the gall black CO, UK -Bile salts mechanically act like detergents by here a like detergents by here a like detergent of the lik clusters

-Bile separates large globules of fruit to smaller ones to no ease their surface area

-Now lipases break them idwa latter into their oriponent glycerol and fatty acids

The mar

Divided into three region :

- 1) Duodenum: the first region after the stomach. It is the shortest region (25 cm) and the widest. The pancreatic and bile ducts secrete here
- 2) Jejenum: the middle region is approx. 2.5 m in length. Contains the highest density of villi and intestinal glands. Where remaining proteins and carbs are broken down
- **3) Ileum:** the region before the large intestine contains fewer and smaller villi. Absorbs nutrients and remaining go to the large intestine. 3 m

-The small intestine is the main site for chemical digestion and absorption of nutrients

-Two important features are:

- 1) Enzymes
- 2) Large surface area for absorption

Secretions of the small intestine:

Maltase: breaks down maltose into glucose Peptidase: breaks down small protein chains into amino acids

Absorption:

-Once food is broken down to its final product (monomers) it must now be absorbed through the blood stream

-To maximize SA on the small intestine, it is a very long winding system of tubes covered in millions of tiny finger-like projections called villi

-Each individual cell has projections called microvilli

-There are small intestinal glands that occupy the spaces between the villi and secrete intestinal juices

-Within each villus there are two different vessel networks (one for blood and one for lymph)

-The blood vessels are the smallest and thinnest of all the vessels known as capillaries

-The water-soluble products of digestion are transferred here to be transported through the body

-The lymph vessels are called lacteals and take in materials like fats to be transported around the body

Digestion of fats:

Fats are difficult to digest because they don't dissolve in water; they tend to stay in

clumps Vitamins and minerals: -Along with the 3 main macromolecule of the need micronutrients in the form

of vitamins and minerals -These dissolve in water or fall dat soluble sitar includ A. D. E. K) and are absorbed along per

nrP The large intestine:

-Some parts of food are indigestible and make it to the large intestine -They are bundled together with others wastes to form the feces

-Cellulose is the main component of feces

-The main function of the large intestine is to absorb water and dissolve minerals from any undigested foods

-This is also the region where intestinal bacteria produce vitamins B12 and K and some amino acids

-Also a site for the reabsorption of water

-The rectum is the region at the end of the colon where feces is held until it is passed through the final opening, the anus

The two sphincters on the large intestine:

- 1) External anal sphincter: where feces is held until it is egested
- 2) Internal anal sphincter: where feces is released

Three main parts of the large intestine:

- 1) Ascending colon
- 2) Transverse colon
- 3) Descending colon

-Your tissues require macronutrients -These macronutrients are broken down and absorbed into the blood in the digestive system -These allow cells to grow, function, and derive energy -Deriving energy requires one other essential ingredient; oxygen

-Every cell in your body needs to receive oxygen and glucose and must remove carbon dioxide

Arteries and veins (both organs):

Arteries-carry blood away from the heart (oxygenated) Veins-carry blood to the heart (deoxygenated)

Differences between veins and arteries:

Artery: smaller diameter, thicker wall, elastic layer (keeps blood flowing in one direction) and this result in high-pressure environment **Vein:** thinner wall, large diameter, valves (keeps blood flowing in one direction) results in low-pressure environment

Two systems in the circulatory system:

- 1) Pulmonary circuit (heart \rightarrow lungs \rightarrow hearts)
- 2) Systematic circuit (heart \rightarrow body \rightarrow heart)

The passage of blood through t

-Blood oxygenated in the ung

- oncentAtion) to +1 -Heart pumps hlood high in 02 concenterion) to the body though the arteries
- -G per clouge occurs. 02 plose el se the cells. CO2 back to the blood
- -Depxygenated blood returns to the heart through the veins

-Heart pumps blood back to lungs for gas exchange

About the heart:

-The heart a muscle that relaxes to fill with blood and contract to pump the blood -Your heartbeat is a double pump

- -"LUBB-DUBB" sound is noise of valves closing
- -First, both atria relax, allowing them to fill with blood
- -This relaxation is called diastole

-The first pump pushes blood from the atria into the ventricles (filling the ventricles)

-Valves between the atria and ventricles prevent backflow of the blood (AV valves) -The second, stronger (thicker) pump pushes blood from the ventricles to the lungs and body

-This contraction of the heart is known as systole (emptying the heart)

-A valve in the pulmonary artery and one in the aorta prevent the blood from flowing back into the ventricles when the heart relaxes after each pump

-"LUBB": AV valves closing

-"DUBB"-semilunar valves closing

-SA Node "pacemaker of the heart", causes the atria walls to contract