
 6

2.2.1: Assignment of Values to Variables

This simplest thing you can do to a variable is assign a value to it. You have
already seen above that you can assign a value to a variable when you declare
it. You can also do this at any point in a program. Following are some examples:

2.2.2: Converting Variables

As we will see below when we discuss arithmetic, we sometimes need to convert
variables from one type to another. For instance consider the following:

The C++ compiler knows how to do simple conversions of this type, but it prefers
it if you explicitly tell it that you want to make a conversion. The syntax for doing
this is:

This is generally called a cast and the above is an example of casting an int to a
float.

2.2.3: Constants

In an example above, we declared a variable pi to store the value of and we
assigned it a reasonable value. It is pretty clear to us that we don‟t want the value
of to be allowed to change anywhere in the program, but the compiler doesn‟t
know that. We can however tell it that we would like to keep the value of pi a
constant, and not let it be changed. The way to do this is to use the const
qualifer:

int i;

int j,k;

i=0;

i=j;

k=1;

i=j=k; // also legal

float x=2.345;

int i;

i=x; // assigning a floating point value to an integer

float x=2.345;

int i;

i=int(x); // explicitly convert x to type int

x=float(i); // convert i to a floating point number

Preview from Notesale.co.uk

Page 6 of 38

 11

3.1.3: Conditions

What are the conditions we can test on in a program? The following table lists
some of the conditions which C++ supports:

Condition Operator Explanation

(a < b) < True if a is less than b

(a > b) > True if a is greater than b

(a <= b) <= True if a is less than or equal to b

(a >= b) >= True if a is greater than or equal
to b

(a == b) == True if a is equal to b

(a != b) != True if a is not equal to b

(a && b) && True if a and b are true

(a || b) || True if a or b is true

You can make arbitrarily complicated expressions such as the following which
will execute if a is greater than b or a is identical to c:

One extremely common programming mistake is the following:

The first statement is allowed, but what it does is first set the value of a equal to
the value of b. It then checks the value of a to see whether it is equal to the value
that C++ uses by convention to indicate true before deciding what to do. There
are cases where this is what you want to do, but it is unlikely that you will need to
do this. Watch out for this bug!

// An if-else statement

const int max(50);

int j;

cin >> j; // the user types in a number

if (j<max) {

cout << “OK” << endl; // print OK if j less than 50

} else {

cout << “Sorry” << endl; // print sorry if j is not

}

if ((a>b) || (a==c)) {

i=i*2; // Whatever you want to execute if condition is true

}

if (a=b) cout << “I didn‟t mean to do this” << endl; // wrong

if (a==b) cout << “What I really meant to do” << endl; // right

Preview from Notesale.co.uk

Page 11 of 38

 15

3.3: How Long Are Variables Valid?

As was discussed above, variables can be defined at any point in your program
and so are automatically made during the program execution only when they are
needed. However, these variables are also removed from memory after they
have been used. This means variables only have a limited range of validity within
your code and this is called their scope. Consider the following example:

Here, the variable k is only created if j is less than 50, otherwise it never exists. It
therefore makes sense that trying to use k after the end of the if statement could
give problems, if the value of j the user typed in happened to be 50 or more. To
avoid such problems, then if k was created, it is removed from memory when the
program execution reaches the end brace of the if statement. It is said to go out
of scope at this point. Any attempt to use it later will give a compilation error;
hence the following is not allowed:

Does this mean we cannot use any variable called k in the rest of the program for
any other purpose? No! Although it is not recommended as it can be very
confusing, we are allowed to do the following:

const int max(50);

int j;

cin >> j; // the user types in a number

if (j<max) {

 int k=j*j; // k equals the square of j

cout << k << endl; // prints square of j, if j less than 50

}

const int max(50);

int j;

cin >> j; // the user types in a number

if (j<max) {

 int k=j*j; // k equals the square of j

}

cout << k << endl; // does not compile

const int max(50);

int j;

cin >> j; // the user types in a number

int k=j*j*j; // k equals the cube of j;

if (j<max) {

 int k=j*j; // k equals the square of j

}

cout << k << endl; // always writes out the cube of j

Preview from Notesale.co.uk

Page 15 of 38

 24

we would find that the read_in function would not change any of its arguments
as it is only able to change copies of the arguments.

5.1.2: Knowing Where The Data Are

If we were able to tell our read_in function where in memory our variables my1,
my2 and my3 were instead of simply what the values of those variables were,
the read_in function could use that knowledge to change the values of the
variables in the main function. The way we will do this is to use a pointer.

5.1.3: What is a Pointer?

A pointer is type of variable which is able to store the location of another variable.
For example a pointer to an int is a variable which can contain the location in the
computer‟s memory where an integer variable is stored. Let‟s look at a couple of
simple examples to see how to define and use a pointer variable:

There is a lot of new syntax in this example, and it is a bit tricky. Lets go through
it line by line, and with the help of a table showing a small section of the
computer memory. The situation after the first five lines have executed might be
as follows:

Memory Location Variable
Name

Variable
Value

4004

4008 j 1

4012

4016 pj 4008

4020

We declare a new variable j on the first line. When we do this, the computer sets
aside some memory for the variable; in our example, four bytes at location 4008.
The value of j at this point is whatever happened to be in this location beforehand
and so is completely unpredictable. We then assign j a value of 1 on the second

int j; // j is defined to be an integer variable

j=1; // set the value of j to 1

int *pj; // pj is defined to be a pointer to an integer

pj=&j; // pj is now pointing to j

cout << j << endl; // print value of j, which is 1

cout << *pj << endl; // print value pointed to by pj, which is 1

*pj=2; // sets j to 2

cout << j << endl; // print the value of j, which is now 2

Preview from Notesale.co.uk

Page 24 of 38

 26

this case ip1) to the second pointer (ip2) so that they now both point at the same
address, and hence the same variable.

5.2: References

C++ offers one other method of accessing memory locations. This is through
references, which are very similar to pointers but have a different syntax. They
hide much of the explicit use of pointers and so can be more convenient.
However, they are more restricted in what they can be used for. If you would like
to know more about this, then you should look up their use in a C++ book.

To define a reference, then we use a & (rather than a * as for pointers) but
otherwise references are used very like normal variables. Below is an example,
similar to the one above, of how to use this syntax:

The main limitation here is that references must point to a variable immediately
and which variable they point to cannot be changed later; hence several lines of
the previous example have no equivalent here.

By using references, we don‟t have to explicitly use pointers and the code looks
like we are using normal variables. The C++ compiler takes care of the
references for us. Arguments which are references behave in the way which
FORTRAN programmers expect arguments to behave.

int x=1,y=2; // two integers

int &ir1=x,&ir2=y; // two references to int

 // ir1 points to x, ir2 points to y

y=irl; // y is now 1

ir1=0; // x is now 0

Preview from Notesale.co.uk

Page 26 of 38

 37

To use an fstream, we first need to attach the stream to a particular file. We do
this with the stream constructor. The constructor is a very important part of
C++ which will be covered in detail in the 2nd year course, but the basic idea is
that it is just a way of initialising a variable (often called an object when it is a
user defined type). In this case the object we wish to initialise is the output file
stream which is an object of the type ofstream. The name of our stream variable
is myfile and we initialise it to connect to the file we wish to use, with the first
statement in the main program above. This creates a new variable which is an
output stream that flows to our file instead of to the terminal. We can then cause
output to go to this file in a similar way to how we sent output to the screen using
the << operator, as shown in the last line.

Similarly, you can read in from files using streams of type ifstream.

8.4: Dynamic Allocation of Memory

Quite often you will want to write a program that allows the user to choose
parameters which affect how much memory your program needs. For example
you may want the user to be able to choose the size of an array. Dynamic
memory allocation lets you allocate space for arrays as the program is running.

The new operator is used to dynamically allocate space for variables. The
following code demonstrates its use:

The new operator returns a pointer to the object you have asked it to allocate.

#include <iostream>

#include <fstream>

using namespace std;

void main(void) {

ofstream myfile("poly.txt");

float dx=0.10;

float x,poly;

for (int i=0;i<100;i++) {

 x=dx*i;

 poly=3.0*x-2.2*x*x+0.2*x*x*x;

 myfile << x << „\t‟ << poly << endl;

}

}

float *fltptr=new float; // allocate a single float variable

double *efield; // declare a pointer

efield=new double[100]; // dynamically allocate an array

int sz;

cin >> sz; // let user specify array size

int *myarray=new int[sz]; // dynamically allocate array

Preview from Notesale.co.uk

Page 37 of 38

