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Foolish Assumptions
If you’re planning to read this book, you’re likely

� A student who wants a solid understanding of the basics of math for a
class or test you’re taking

� An adult who wants to improve skills in arithmetic, fractions, decimals,
percentages, weights and measures, geometry, algebra, and so on for
when you have to use math in the real world

� Someone who wants a refresher so you can help another person under-
stand math

My only assumption about your skill level is that you can add, subtract, 
multiply, and divide. So to find out whether you’re ready for this book, take
this simple test:

5 + 6 = __

10 – 7 = __

3 × 5 = __

20 ÷ 4 = __

If you can answer these four questions, you’re ready to begin.

How This Book Is Organized
This book is organized into six parts, starting you off at the very beginning of
math — with topics such as counting and the number line — and taking you
all the way into algebra.

Part I: Arming Yourself with 
the Basics of Basic Math
In Part I, I take what you already know about math and put it in perspective. 

Chapter 1 gives you a brief history of what numbers are and where they came
from. I discuss how number sequences arise. I show you how important sets
of numbers — such as the counting numbers, the integers, and the rational
numbers — all fit together on the number line. I also show you how to use
the number line to perform basic arithmetic.

3Introduction
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In this part . . .

You already know more about math than you think
you know. Here, you review and gain perspective on

basic math ideas such as number patterns, the number
line, how place value based on the number ten turns
digits into numbers, and how zero functions as a place-
holder. I also reintroduce you to what I call the Big 
Four operations (adding, subtracting, multiplying, and
dividing).
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Multiplying quickly with exponents 
Here’s an old question that still causes surprises: Suppose you took a job that
paid you just 1 penny the first day, 2 pennies the second day, 4 pennies the
third day, and so on, doubling the amount every day, like this:

1 2 4 8 16 32 64 128 256 512 ...

As you can see, in the first ten days of work, you would’ve earned a little
more than $10 (actually, $10.23 — but who’s counting?). How much would
you earn in 30 days? Your answer may well be, “I wouldn’t take a lousy job
like that in the first place.” At first glance, this looks like a good answer, but
here’s a glimpse at your second ten days’ earnings:

... 1,024 2,048 4,096 8,192 16,384 32,768 65,536
131,072 262,144 524,288 ...

By the end of the second 10 days, your total earnings would be over $10,000.
And by the end of the third week, your earnings would top out around
$10,000,000! How does this happen? Through the magic of exponents (also
called powers). Each new number in the sequence is obtained by multiplying
the previous number by 2:

21 = 2 = 2

22 = 2 × 2 = 4

23 = 2 × 2 × 2 = 8

24 = 2 × 2 × 2 × 2 = 16

As you can see, the notation 24 means multiply 2 by itself 4 times. 

You can use exponents on numbers other than 2. Here’s another sequence
you may be familiar with:

1 10 100 1,000 10,000 100,000 1,000,000...

In this sequence, every number is 10 times greater than the number before it.
You can also generate these numbers using exponents:

101 = 10 = 10

102 = 10 × 10 = 100

103 = 10 × 10 × 10 = 1,000

104 = 10 × 10 × 10 × 10 = 10,000

17Chapter 1: Playing the Numbers Game
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Table 2-3 3,040,070 Displayed with Two Leading Zeros

Millions Thousands Ones

Hundred Ten Mil- Hundred Ten Thou- Thou- Hun- Tens Ones
Millions Millions lions Thousands sands sands dreds

0 0 3 0 4 0 0 7 0

The first two 0s in the number are leading zeros because they appear to the left
of the 3. You can drop these 0s from the number, leaving you with 3,040,070.
The remaining 0s are all to the right of the 3, so they’re placeholders — be sure
to write them in.

Reading long numbers
When you write a long number, you use commas to separate periods. Periods
are simply groups of three numbers. They help make long numbers more
readable. For example, here’s about as long a number as you’ll ever see:

234,845,021,349,230,467,304

Table 2-4 shows a larger version of the place-value chart.

Table 2-4 A Place-Value Chart Separated into Periods

Quintillions Quadrillions Trillions Billions Millions Thousands Ones

234 845 021 349 230 467 304

This version of the chart helps you read the number. Begin all the way to the
left and read, “Two hundred thirty-four quintillion, eight hundred forty-five
quadrillion, twenty-one trillion, three hundred forty-nine billion, two hundred
thirty million, four hundred sixty-seven thousand, three hundred four.”

When you read and write whole numbers, don’t say the word and. In math,
the word and means you have a decimal point. That’s why when you write a
check, you save the word and for the number of cents, which is expressed as
a decimal or fraction. (I discuss decimals in Chapter 11.)

32 Part I: Arming Yourself with the Basics of Basic Math 
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Occasionally, a small change to the ones and tens digits affects the other
digits. (This is a lot like when the odometer in your car rolls a bunch of 9s
over to 0s.) For example:

899 → 900 1,097 → 1,100 9,995 → 10,000

Rounding numbers to the nearest hundred and beyond 
To round numbers to the nearest hundred, or thousand, or beyond, focus
only on two digits: the digit in the place you’re rounding to and the digit to its
immediate right. Change all other digits to the right of these two digits to 0s.
For example, suppose you want to round 642 to the nearest hundred. Focus
on the hundreds digit (6) and the digit to its immediate right (4):

642

I’ve underlined these two digits. Now, just round these two digits as if you were
rounding to the nearest ten, and change the digit to the right of them to a 0:

642 → 600 

Here are a few more examples of rounding numbers to the nearest hundred:

7,891 → 7,900 15,753 → 15,800 99,961 → 100,000

When rounding numbers to the nearest thousand, underline the thousands
digit and the digit to its immediate right. Round the number by focusing only
on the two underlined digits and, when you’re done, change all digits to the
right of these to 0s: 

4,984 → 5,000 78,521 → 79,000 1,099,304 → 1,099,000

Even when rounding to the nearest million, the same rules apply:

1,234,567 → 1,000,000 78,883,958 → 79,000,000

Estimating value to make problems easier
After you know how to round numbers, you can use this skill in estimating
values. Estimating saves you time by allowing you to avoid complicated com-
putations and still get an approximate answer to a problem.

When you get an approximate answer, you don’t use an equal sign; instead,
you use this wavy symbol, which means is approximately equal to: ≈.

34 Part I: Arming Yourself with the Basics of Basic Math 
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Multiplying
Multiplication is often described as a sort of shorthand for repeated addition.
For example,

4 × 3 means add 4 to itself 3 times: 4 + 4 + 4 = 12

9 × 6 means add 9 to itself 6 times: 9 + 9 + 9 + 9 + 9 + 9 = 54

100 × 2 means add 100 to itself 2 times: 100 + 100 = 200

Although multiplication isn’t as warm and fuzzy as addition, it’s a great 
timesaver. For example, suppose you coach a Little League baseball team and
you’ve just won a game against the toughest team in the league. As a reward,
you promised to buy three hot dogs for each of the nine players on the team.
To find out how many hot dogs you need, you could add 3 together 9 times.
Or you can save time by multiplying 3 times 9, which gives you 27. Therefore,
you need 27 hot dogs (plus a whole lot of mustard and sauerkraut).

When you multiply two numbers, the two numbers that you’re multiplying
are called factors, and the result is the product.

In multiplication, the first number is also called the multiplicand and the
second number is the multiplier. But almost nobody ever remembers
these words.

Signs of the times
When you’re first introduced to multiplication, you use the times sign (×).
However, algebra uses the letter x a lot, which looks similar to the times sign,
so people often choose to use other multiplication symbols for clarity. As you
move onwards and upwards on your math journey, you should be aware of
the conventions I discuss in the following sections.

Arriving on the dot
In math beyond arithmetic, the symbol ⋅ replaces ×. For example,

4 ⋅ 2 = 8 means 4 × 2 = 8

6 ⋅ 7 = 42 means 6 × 7 = 42

53 ⋅ 11 = 583 means 53 × 11 = 583

44 Part I: Arming Yourself with the Basics of Basic Math 
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These steps are one complete cycle, and to complete the problem you just
need to repeat them. Now ask how many times 5 goes into 36 — that is,
what’s 36 ÷ 5? The answer is 7 (with a little left over). Write 7 just above the 6,
and then multiply 7 × 5 to get 35; write the answer under 36:

5 860
17

5

36

35

-

g

Now subtract to get 36 – 35 = 1; bring down the 0 next to the 1 to make the
new number 10:

5 860
17

5

36

35

10

-

-

g

Another cycle is complete, so begin the next cycle by asking how many times
5 goes into 10 — that is, 10 ÷ 5. The answer this time is 2. Write down the 2 in
the answer above the 0. Multiply to get 2 × 5 = 10, and write this answer
below the 10:

5 860
172

5

36

35

10

10

-

g

Now subtract 10 – 10 = 0. Because you have no more numbers to bring down,
you’re finished, and here’s the answer (that is, the quotient):

5 860
172

5

36

35

10

10

0

-

-

Quotient!

g

So 860 ÷ 5 = 172.

53Chapter 3: The Big Four: Addition, Subtraction, Multiplication, and Division
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Adding a negative number
Suppose you want to solve –2 + –4. You already know to start at –2, but where
do you go from there? Here’s the up and down rule for adding a negative
number:

Adding a negative number is the same as subtracting a positive number — that
is, go down on the number line.

By this rule, –2 + –4 is the same as –2 – 4, so

Start at –2, down 4

So –2 + (–4) = –6.

If you rewrite a subtraction problem as an addition problem — for instance,
rewriting 3 – 7 as 3 + (–7) — you can use the commutative and associative
properties of addition, which I discuss earlier in this chapter. Just remember to
keep the negative sign attached to the number when you rearrange: (–7) + 3.

Subtracting a negative number
The last rule you need to know is how to subtract a negative number. For
example, suppose you want to solve 2 – (–3). Here’s the up and down rule:

Subtracting a negative number is the same as adding a positive number —
that is, up on the number line.

This rule tells you that 2 – (–3) is the same as 2 + 3, so

Start at 2, up 3

So 2 – (–3) = 5.

When subtracting negative numbers, you can think of the two minus signs
canceling each other out to create a positive.

–2 –1 0 1 2 3 4 5 6 7

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2

63Chapter 4: Putting the Big Four Operations to Work
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In many cases, however, multiplying and dividing units is okay. For example,
multiplying units of length (such as inches, miles, or meters) results in square
units. For example,

3 inches ⋅ 3 inches = 9 square inches

10 miles ⋅ 5 miles = 50 square miles

100 meters ⋅ 200 meters = 20,000 square meters

You find out more about units of length in Chapter 15. Similarly, here are
some examples of when dividing units makes sense:

12 slices of pizza ÷ 4 people = 3 slices of pizza/person

140 miles ÷ 2 hours = 70 miles/hour

In these cases, you read the fraction slash (/) as per: slices of pizza per person
or miles per hour. You find out more about multiplying and dividing by units in
Chapter 15, when I show you how to convert from one unit of measurement to
another.

Understanding Inequalities
Sometimes, you want to talk about when two quantities are different. These
statements are called inequalities. In this section, I discuss four types of
inequalities: ≠ (doesn’t equal), < (less than), > (greater than), and ≈ (approxi-
mately equals).

Doesn’t equal (≠)
The simplest inequality is ≠, which you use when two quantities are not
equal. For example,

2 + 2 ≠ 5

3 × 4 ≠ 34

999,999 ≠ 1,000,000

You can read ≠ as “doesn’t equal” or “is not equal to.” Therefore, read 
2 + 2 ≠ 5 as “two plus two doesn’t equal five.”

66 Part II: Getting a Handle on Whole Numbers 

Preview from Notesale.co.uk

Page 83 of 385



Beyond the Big Four: Exponents, Square
Roots, and Absolute Value

In this section, I introduce you to three new operations that you need as you
move on with math: exponents, square roots, and absolute value. As with the
Big Four operations, these three operations take numbers and tweak them in
various ways. 

To tell the truth, these three operations have fewer everyday applications
than the Big Four. But you’ll be seeing a lot more of them as you progress in
your study of math. Fortunately, they aren’t difficult, so this is a good time to
become familiar with them. 

Understanding exponents
Exponents (also called powers) are shorthand for repeated multiplication. For
example, 23 means to multiply 2 by itself 3 times. To do that, use the following
notation:

23 = 2 ⋅ 2 ⋅ 2 = 8

In this example, 2 is the base number and 3 is the exponent. You can read 23 as
“2 to the third power” or “2 to the power of 3” (or even “2 cubed,” which has
to do with the formula for finding the value of a cube — see Chapter 16 for
details).

Here’s another example:

105 means to multiply 10 by itself 5 times

That works out like this:

105 = 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 = 100,000

This time, 10 is the base number and 5 is the exponent. Read 105 as “10 to the
fifth power” or “10 to the power of 5.”

When the base number is 10, figuring out any exponent is easy. Just write
down a 1 and that many 0s after it:

102 = 100 (1 with two 0s)

107 = 10,000,000 (1 with seven 0s)

1020 = 100,000,000,000,000,000,000 (1 with twenty 0s)

68 Part II: Getting a Handle on Whole Numbers 
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Exponents with a base number of 10 are very important in scientific notation,
which I cover in Chapter 14.

The most common exponent is the number 2. When you take any whole
number to the power of 2, the result is a square number. (For more informa-
tion on square numbers, see Chapter 1.) For this reason, taking a number to
the power of 2 is called squaring that number. You can read 32 as “three
squared,” 42 as “four squared,” and so forth. Here are some squared numbers:

32 = 3 ⋅ 3 = 9

42 = 4 ⋅ 4 = 16

52 = 5 ⋅ 5 = 25

Any number raised to the 0 power equals 1. So 10, 370, and 999,9990 are 
equivalent, or equal.

Discovering your roots
Earlier in this chapter, in “Knowing Properties of the Big Four Operations,”
I show you how addition and subtraction are inverse operations. I also show
you how multiplication and division are inverse operations. In a similar way,
roots are the inverse operation of exponents. 

The most common root is the square root. A square root undoes an exponent
of 2. For example,

32 = 3 ⋅ 3 = 9, so 9 = 3

42 = 4 ⋅ 4 = 16, so 16 = 4

52 = 5 ⋅ 5 = 25, so 25 = 5

You can read the symbol either as “the square root of” or as “radical.” So, 

read 9 as either “the square root of 9” or “radical 9.”

As you can see, when you take the square root of any square number, the
result is the number that you multiplied by itself to get that square number 

in the first place. For example, to find 100, you ask the question, “What
number when multiplied by itself equals 100?” The answer in this case is 10,
because

10 ⋅ 10 = 100, so 100 = 10

You probably won’t use square roots too much until you get to algebra, but at
that point they become very handy.

69Chapter 4: Putting the Big Four Operations to Work
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First, evaluate the exponent:

= 3 + 25 – 6

At this point, the expression contains only addition and subtraction, so you
can evaluate it from left to right in two steps:

= 28 – 6

= 22

So 3 + 52 – 6 = 22.

Understanding order of precedence
in expressions with parentheses
In math, parentheses — ( ) — are often used to group together parts of an
expression. When it comes to evaluating expressions, here’s what you need
to know about parentheses.

To evaluate expressions that contain parentheses,

1. Evaluate the contents of parentheses, from the inside out.

2. Evaluate the rest of the expression.

Big Four expressions with parentheses
Similarly, suppose you want to evaluate (1 + 15 ÷ 5) + (3 – 6) ⋅ 5. This expres-
sion contains two sets of parentheses, so evaluate these from left to right.
Notice that the first set of parentheses contains a mixed-operator expression,
so evaluate this in two steps starting with the division:

= (1 + 3) + (3 – 6) ⋅ 5

= 4 + (3 – 6) ⋅ 5

Now evaluate the contents of the second set of parentheses:

= 4 + –3 ⋅ 5

Now you have a mixed-operator expression, so evaluate the multiplication
(–3 ⋅ 5) first:

= 4 + –15

79Chapter 5: A Question of Values: Evaluating Arithmetic Expressions
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With the parentheses removed, you’re ready to evaluate the exponent:

= 8

Once in a rare while, the exponent itself contains parentheses. As always,
evaluate what’s in the parentheses first. For example,

21(19 + 3 ⋅ –6)

This time, the smaller expression inside the parentheses is a mixed-operator
expression. I underlined the part that you need to evaluate first:

= 21(19 + –18)

Now you can finish off what’s inside the parentheses:

= 211

At this point, all that’s left is a very simple exponent:

= 21

So 21(19 + 3 ⋅ –6) = 21.

Note: Technically, you don’t need to put parentheses around the exponent. If
you see an expression in the exponent, treat it as though it had parentheses
around it. In other words, 2119 + 3 ⋅ –6 means the same thing as 21(19 + 3 ⋅ –6).

Expressions with nested parentheses
Occasionally, an expression has nested parentheses: one or more sets
of parentheses inside another set. Here, I give you the rule for handling
nested parentheses.

When evaluating an expression with nested parentheses, evaluate what’s
inside the innermost set of parentheses first and work your way toward the
outermost parentheses.

For example, suppose you want to evaluate the following expression:

2 + (9 – (7 – 3))

I underlined the contents of the innermost set of parentheses, so evaluate
these contents first:

= 2 + (9 – 4)

81Chapter 5: A Question of Values: Evaluating Arithmetic Expressions
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However, when the digital root of a number is anything other than 3, 6, or 9,
the number isn’t divisible by 3. Here’s an example:

706: 7 + 0 + 6 = 13; 1 + 3 = 4

Because the digital root of 706 is 4, 706 isn’t divisible by 9. If you try to divide
706 by 9, you get 78 r 4.

Divisible by 11
Two-digit numbers that are divisible by 11 are hard to miss because they
simply repeat the same digit twice. Here are all the numbers less than 100
that are divisible by 11:

11 22 33 44 55 66 77 88 99

For numbers between 100 and 200, use this rule: Every three-digit number
whose first and third digits add up to its second digit is divisible by 11. For
example, suppose you want to decide whether the number 154 is divisible
by 11. Just add up the first and third digit:

1 + 4 = 5

Because these two numbers add up to the second digit, 5, the number 154 is
divisible by 11. If you divide, you get 154 ÷ 11 = 14, a whole number.

Now suppose you want to figure out whether 136 is divisible by 11. Add the
first and third digits:

1 + 6 = 7

Because the first and third digits add up to 7 instead of 3, the number 136
isn’t divisible by 11. You can find that 136 ÷ 11 = 12 r 4.

For numbers of any length, the rule is slightly more complicated, but it’s still
often easier than doing long division. A number is divisible by 11 when its
alternate digits

� Add up to the same number or

� Add up to two numbers that, when one is subtracted from the other,
result in a number that’s divisible by 11

For example, suppose you want to discover whether the number 15,983 is
divisible by 11. To start out, underline alternate digits (every other digit):

15,983

101Chapter 7: Divisibility
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Similarly, 3 is prime because when you divide by any number but 1 or 3,
you get a remainder. So the only way to multiply two numbers together and
get 3 as a product is the following:

1 ⋅ 3 = 3

On the other hand, 4 is a composite number because it’s divisible by three
numbers: 1, 2, and 4. In this case, you have two ways to multiply two counting
numbers and get a product of 4:

1 ⋅ 4 = 4

2 ⋅ 2 = 4

But 5 is a prime number, because it’s divisible only by 1 and 5. Here’s the only
way to multiply two counting numbers together and get 5 as a product:

1 ⋅ 5 = 5

And 6 is a composite number because it’s divisible by 1, 2, 3, and 6. Here are
two ways to multiply two counting numbers and get a product of 6:

1 ⋅ 6 = 6

2 ⋅ 3 = 6

Every counting number except 1 is either prime or composite. The reason 1 is
neither is that it’s divisible by only one number, which is 1.

Here’s a list of the prime numbers that are less than 30:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Remember the first four prime numbers: 2, 3, 5, and 7. Every composite
number less than 100 is divisible by at least one of these numbers. This fact
makes it easy to test whether a number under 100 is prime: Simply test it
for divisibility by 2, 3, 5, and 7. If it’s divisible by any of these numbers, it’s
composite — if not, it’s prime.

For example, suppose you want to find out whether the number 79 is prime
or composite without actually doing the division. Here’s how you think it out,
using the tricks I show you earlier in “Knowing the Divisibility Tricks”:

� 79 is an odd number, so it isn’t divisible by 2. 

� 79 has a digital root of 8 (because 7 + 9 = 16; 1 + 6 = 7), so it isn’t divisible
by 3.

103Chapter 7: Divisibility
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� 79 doesn’t end in 5 or 0, so it isn’t divisible by 5.

� Even though there’s no trick for divisibility by 7, you know that 77 is
divisible by 7. So 79 ÷ 7 would leave remainder of 2, which tells you that
79 isn’t divisible by 7.

Because 79 is less than 100 and isn’t divisible by 2, 3, 5, or 7, you know that 79
is a prime number.

Now test whether 93 is prime or composite:

� 93 is an odd number, so it isn’t divisible by 2. 

� 93 has a digital root of 3 (because 9 + 3 = 12 and 1 + 2 = 3), so 93 is divis-
ible by 3.

You don’t need to look further. Because 93 is divisible by 3, you know it’s
composite.

104 Part II: Getting a Handle on Whole Numbers 
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The resulting prime factorization for 84 is as follows:

84 = 2 ⋅ 7 ⋅ 2 ⋅ 3

If you like, though, you can rearrange the factors from lowest to highest:

84 = 2 ⋅ 2 ⋅ 3 ⋅ 7

By far, the most difficult situation occurs when you’re trying to find the prime
factors of a prime number but don’t know it. For example, suppose you want
to find the prime factorization for the number 71. This time, you don’t recog-
nize the number from the multiplication tables and it isn’t divisible by 2 or 5.
What next?

If a number that’s less than 100 (actually, less than 121) isn’t divisible by 2, 3, 5,
or 7, it’s a prime number.

Testing for divisibility by 3 by finding the digital root of 71 (that is, by adding
the digits) is easy. As I explain in Chapter 7, numbers divisible by 3 have digital
roots of 3, 6, or 9.

7 + 1 = 8

Because the digital root of 71 is 8, 71 isn’t divisible by 3. Divide to test whether
71 is divisible by 7:

71 ÷ 7 = 10 r 1

So now you know that 71 isn’t divisible by 2, 3, 5, or 7. Therefore, 71 is a
prime number, so you’re done.

Finding prime factorizations for numbers greater than 100
Most of the time, you don’t have to worry about finding the prime factoriza-
tions of numbers greater than 100. Just in case, though, here’s what you need
to know.

As I mention in the preceding section, factor out the 5s and 2s first. A special
case is when the number you’re factoring ends in one or more 0s. In this case,
you can factor out a 10 for every 0. For example, Figure 8-7 shows the first step.

700 ✓

10 10 7

Figure 8-7:

The first

step in

factoring

700.

113Chapter 8: Fabulous Factors and Marvelous Multiples
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To find the GCF of a set of numbers, list all the factors of each number, as I
show you in “Generating a number’s factors.” The greatest factor appearing
on every list is the GCF. For example, to find the GCF of 6 and 15, first list all
the factors of each number. 

Factors of 6: 1, 2, 3, 6

Factors of 15: 1, 3, 5, 15

Because 3 is the greatest factor that appears on both lists, 3 is the GCF of 6
and 15.

As another example, suppose you want to find the GCF of 9, 20, and 25. Start
by listing the factors of each:

Factors of 9: 1, 3, 9

Factors of 20: 1, 2, 4, 5, 10, 20

Factors of 25: 1, 5, 25

In this case, the only factor that appears on all three lists is 1, so 1 is the GCF
of 9, 20, and 25.

Using prime factorization to find the GCF
You can use prime factorization to find the GCF of a set of numbers. This often
works better for large numbers, where generating lists of all factors can be
time-consuming.

Here’s how to find the GCF of a set of numbers using prime factorization:

1. List the prime factors of each number (see the earlier “Prime factors”
section).

2. Circle every common prime factor — that is, every prime factor that’s
a factor of every number in the set.

3. Multiply all the circled numbers.

The result is the GCF.

For example, suppose you want to find the GCF of 28, 42, and 70. Step 1 says to
list the prime factors of each number. Step 2 says to circle every prime factor
that’s common to all three numbers (as shown in Figure 8-9).

28 = 2 ⋅ 2 ⋅ 7

42 = 2 ⋅ 3 ⋅ 7

70 = 2 ⋅ 5 ⋅ 7

Figure 8-9:

Finding the

GCF of 28,

42, and 70.
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Next, list multiples of 3, listing ten of them (because 2 ⋅ 5 = 10):

Multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...

The only numbers repeated on both lists are 15 and 30. In this case, you can
save yourself the trouble of making the last list because 30 is obviously a mul-
tiple of 2, and 15 isn’t. So 30 is the LCM of 2, 3, and 5.

Using prime factorization to find the LCM
A second method for finding the LCM of a set of numbers is to use the prime
factorizations of those numbers. Here’s how:

1. List the prime factors of each number.

I show you how to find the prime factors of a number earlier in this
chapter, in “Prime factors.”

Suppose you want to find the LCM of 18 and 24. List the prime factors of
each number:

18 = 2 ⋅ 3 ⋅ 3

24 = 2 ⋅ 2 ⋅ 2 ⋅ 3

2. For each prime number listed, underline the most repeated occurrence
of this number in any prime factorization.

The number 2 appears once in the prime factorization of 18 but three
times in that of 24, so underline the three 2s:

18 = 2 ⋅ 3 ⋅ 3

24 = 2 ⋅ 2 ⋅ 2 ⋅ 3

Similarly, the number 3 appears twice in the prime factorization of 18
but only once in that of 24, so underline the two 3s:

18 = 2 ⋅ 3 ⋅ 3

24 = 2 ⋅ 2 ⋅ 2 ⋅ 3

3. Multiply all the underlined numbers.

Here’s the product:

2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 = 72

So the LCM of 18 and 24 is 72. This checks out because

18 ⋅ 4 = 72

24 ⋅ 3 = 72
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Chapter 9

Fooling with Fractions
In This Chapter
� Looking at basic fractions

� Knowing the numerator from the denominator

� Understanding proper fractions, improper fractions, and mixed numbers

� Increasing and reducing the terms of fractions

� Converting between improper fractions and mixed numbers

� Using cross-multiplication to compare fractions 

Suppose that today is your birthday and your friends are throwing you a
surprise party. After opening all your presents, you finish blowing out

the candles on your cake, but now you have a problem: Eight of you want
some cake, but you have only one cake. Several solutions are proposed:

� You could all go into the kitchen and bake seven more cakes.

� Instead of eating cake, everyone could eat celery sticks.

� Because it’s your birthday, you could eat the whole cake and everyone
else could eat celery sticks. (That was your idea.)

� You could cut the cake into eight equal slices so that everyone can
enjoy it.

After careful consideration, you choose the last option. With that decision,
you’ve opened the door into the exciting world of fractions. Fractions repre-
sent parts of a thing that can be cut into pieces. In this chapter, I give you
some basic information about fractions that you need to know, including the
three basic types of fractions: proper fractions, improper fractions, and mixed
numbers. 

I move on to increasing and reducing the terms of fractions, which you need
when you begin applying the Big Four operations to fractions in Chapter 10.
I also show you how to convert between improper fractions and mixed num-
bers. Finally, I show you how to compare fractions using cross-multiplication.
By the time you’re done with this chapter, you’ll see how fractions really can
be a piece of cake!
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In this example, the number 3 is the numerator, and the number 4 is the
denominator. Similarly, look at this fraction:

89
55

The number 55 is the numerator, and the number 89 is the denominator.

Flipping for reciprocals
When you flip a fraction over, you get its reciprocal. For example, the following
numbers are reciprocals:

3
2 and

2
3

14
11 and

11
14

19
19 is its own reciprocal

Using ones and zeros
When the denominator (bottom number) of a fraction is 1, the fraction is
equal to the numerator by itself. Or conversely, you can turn any whole
number into a fraction by drawing a line and placing the number 1 under it.
For example,

1
2 2=

1
9 9=

1
157 157=

When the numerator and denominator match, the fraction equals 1. That’s
because if you cut a cake into eight pieces and you keep all eight of them, you
have the entire cake. Here are some fractions that equal 1:

8
8 1=

11
11 1=

365
365 1=

When the numerator of a fraction is 0, the fraction is equal to 0. For example,

1
0 0=

12
0 0=

113
0 0=
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2. Repeat Step 1 until the numerator or denominator (or both) is no
longer divisible by 2.

In the resulting fraction, both numbers are still even, so repeat the first
step again:

30
12

15
6

=

3. Repeat Step 1 using the number 3, and then 5, and then 7, continuing
testing prime numbers until you’re sure that the numerator and
denominator have no common factors.

Now, the numerator and the denominator are both divisible by 3 (see
Chapter 7 for easy ways to tell if one number is divisible by another), so
divide both by 3:

15
6

5
2

=

Neither the numerator nor the denominator is divisible by 3, so this step
is complete. At this point, you can move on to test for divisibility by 5, 7,
and so on, but you really don’t need to. The numerator is 2, and it obvi-
ously isn’t divisible by any larger number, so you know that the fraction
24⁄60 reduces to 2⁄5.

Converting Between Improper Fractions
and Mixed Numbers

In “Knowing the fraction facts of life,” I tell you that any fraction whose
numerator is greater than its denominator is an improper fraction. Improper
fractions are very useful and easy to work with, but for some reason, people
just don’t like them. (The word improper should’ve tipped you off.) Teachers
especially don’t like them, and they really don’t like an improper fraction to
appear as the answer to a problem. However, they love mixed numbers. One
reason they love them is that estimating the approximate size of a mixed
number is easy.

For example, if I tell you to put 31⁄3 of a gallon of gasoline in my car, you’d prob-
ably find it hard to estimate roughly how much that is: 5 gallons, 10 gallons,
20 gallons?

But if I tell you to get 101⁄3 gallons of gasoline, you know immediately that this
amount is a little more than 10 but less than 11 gallons. Although 101⁄3 is the
same as 31⁄3, knowing the mixed number is a lot more helpful in practice. For
this reason, you often have to convert improper fractions to mixed numbers.
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1. Cross-multiply the two fractions and subtract the second number from
the first to get the numerator of the answer.

For example, suppose you want to subtract 6⁄7 – 2⁄5. To get the numerator,
cross-multiply the two fractions and then subtract the second number
from the first number (see Chapter 9 for info on cross-multiplication):

7
6 – 

5
2

(6 ⋅ 5) – (2 ⋅ 7) = 30 – 14 = 16

After you cross-multiply, be sure to subtract in the correct order. (The
first number is the numerator of the first fraction times the denominator
of the second.)

2. Multiply the two denominators together to get the denominator of the
answer.

7 ⋅ 5 = 35

3. Putting the numerator over the denominator gives you your answer.

35
16

Here’s another example to work with:

10
9

6
5

-

This time, I put all the steps together:

10
9

6
5

10 6
9 6 5 10

- =
-

$
$ $

With the problem set up like this, you just have to simplify the result:

60
54 50

60
4

=
-

=

In this case, you can reduce the fraction:

60
4

15
1

=

Cutting it short with a quick trick
The easy way I show you in the preceding section works best when the
numerators and denominators are small. When they’re larger, you may be
able to take a shortcut.

Before you subtract fractions with different denominators, check the denomi-
nators to see whether one is a multiple of the other (for more on multiples,
see Chapter 8). If it is, you can use the quick trick:
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In pairs: Adding two mixed numbers
Adding mixed numbers looks a lot like adding whole numbers: You stack
them up one on top of the other, draw a line, and add. For this reason, some
students feel more comfortable adding mixed numbers than adding fractions.
Here’s how to add two mixed numbers:

1. Add the fractional parts using any method you like, and if necessary,
change this sum to a mixed number and reduce it.

2. If the answer you found in Step 1 is an improper fraction, change it to
a mixed number, write down the fractional part, and carry the whole
number part to the whole number column.

3. Add the whole number parts (including any number carried).

Your answer may also need to be reduced to lowest terms (see Chapter 9). In
the examples that follow, I show you everything you need to know.

Summing up mixed numbers when the denominators are the same

As with any problem involving fractions, adding is always easier when the
denominators are the same. For example, suppose you want to add 31⁄3 + 51⁄3.
Doing mixed number problems is often easier if you place one number above
the other:

3

5

1
3

1
3+

As you can see, this arrangement is similar to how you add whole numbers,
but it includes an extra column for fractions. Here’s how you add these two
mixed numbers step by step:

1. Add the fractions.

3
1

3
1

3
2

+ =

2. Switch improper fractions to mixed numbers; write down your
answer.

Because 2⁄3 is a proper fraction, you don’t have to change it.

3. Add the whole number parts.

3 + 5 = 8

Here’s how your problem looks in column form:

3

5

8

1
3

1
3

2
3

+
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commonly, you need to round a decimal either to a whole number or to one
or two decimal places. 

To round a decimal to a whole number, focus on the ones digit and the tenths
digit. Round the decimal either up or down to the nearest whole number,
dropping the decimal point:

7.1 -> 7 32.9 -> 33 184.3 -> 184

When the tenths digit is 5, round the decimal up:

83.5 -> 84 296.5 -> 297 1,788.5 -> 1,789

If the decimal has other decimal digits, just drop them:

18.47 -> 18 21.618 -> 22 3.1415927 -> 3

Occasionally, a small change to the ones digits affects the other digits. (This
may remind you of when the odometer in your car rolls a bunch of 9s over to
0s):

99.9 -> 100 999.5 -> 1,000 99,999.712 -> 100,000

The same basic idea applies to rounding a decimal to any number of places.
For example, to round a decimal to one decimal place, focus on the first and
second decimal places (that is, the tenths and hundredths places):

76.543 -> 76.5 100.6822 -> 100.7 10.10101 -> 10.1

To round a decimal to two decimal places, focus on the second and third dec-
imal places (that is, the hundredths and thousandths places):

444.4444 -> 444.44 26.55555 -> 26.56 99.997 -> 100.00

Performing the Big Four with Decimals
Everything you already know about adding, subtracting, multiplying, and
dividing whole numbers (see Chapter 3) carries over when you work with
decimals. In fact, in each case, there’s really only one key difference: how to
handle that pesky little decimal point. In this section, I show you how to per-
form the Big Four math operations with decimals.
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The most common use of adding and subtracting decimals is when you’re
working with money — for example, balancing your checkbook. Later in this
book, you find that multiplying and dividing by decimals is useful for calculat-
ing percentages (see Chapter 12), using scientific notation (see Chapter 14),
and measuring with the metric system (see Chapter 15).

Adding decimals
Adding decimals is almost as easy as adding whole numbers. As long as you
set up the problem correctly, you’re in good shape. To add decimals, follow
these steps:

1. Line up the decimal points.

2. Add as usual from right to left, column by column.

3. Place the decimal point in the answer in line with the other decimal
points in the problem.

For example, suppose you want to add the numbers 14.5 and 1.89. Line up the
decimal points neatly as follows:

14.5

+ 1.89

Begin adding from the right-hand column. Treat the blank space after 14.5 as
a 0 — you can write this in as a trailing 0 (see earlier in this chapter to see
why adding zeros to the end of a decimal doesn’t change its value). Adding
this column gives you 0 + 9 = 9:

14.50

+ 1.89

9

Continuing to the left, 5 + 8 = 13, so put down the 3 and carry the 1:

1
14.50

+ 1.89

39
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But at least you can take comfort in the fact that when you know how to do
long division (which I cover in Chapter 3), figuring out how to divide deci-
mals is easy. The main difference comes at the beginning, before you start
dividing.

Here’s how to divide decimals:

1. Turn the divisor (the number you’re dividing by) into a whole
number by moving the decimal point all the way to the right; at the
same time, move the decimal point in the dividend (the number
you’re dividing) the same number of places to the right.

For example, suppose you want to divide 10.274 by 0.11. Write the prob-
lem as usual:

. .0 11 10 274g
Turn 0.11 into a whole number by moving the decimal point in 0.11 two
places to the right, giving you 11. At the same time, move the decimal
point in 10.274 two places to the right, giving you 1,027.4:

. .11 1027 4g
2. Place a decimal point in the quotient (the answer) directly above

where the decimal point now appears in the dividend.

Here’s what this step looks like:

. .
.

11 1027 4g
3. Divide as usual, being careful to line up the quotient properly so that

the decimal point falls into place.

To start out, notice that 11 is too large to go into either 1 or 10. However,
11 does go into 102 (9 times). So write the first digit of the quotient just
above the 2 and continue:

. .
.

11 1027 4

99

37

9
g

I left off after bringing down the next number, 7. This time, 11 goes into
37 three times. The important thing is to place the next digit in the
answer just above the 7:

. .
.

11 1027 4

99

37

33

44

93
g
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The last stop: Terminating decimals
Sometimes, when you divide the numerator of a fraction by the denominator,
the division eventually works out evenly. The result is a terminating decimal.

For example, suppose you want to change the fraction 2⁄5 to a decimal. Here’s
your first step:

5 2g
One glance at this problem, and it looks like you’re doomed from the start
because 5 doesn’t go into 2. But watch what happens when I add a few trail-
ing zeros. Notice that I also place another decimal point in the answer just
above the first decimal point. This step is important — you can read more
about it in “Dividing decimals”:

.

.
5 2 000g

Now you can divide because although 5 doesn’t go into 2, 5 does go into 20
four times:

.

.
5 2 000

20

0

0 4
g

You’re done! As it turns out, you only needed one trailing zero, so you can
ignore the rest:

.
5
2 0 4=

Because the division worked out evenly, the answer is an example of a 
terminating decimal. 

As another example, suppose you want to find out how to represent 7⁄16 as a
decimal. As earlier, I attach three trailing zeros:

.
.

16 7 000

64

60

48

120

112

8

0 437
g
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Figuring out simple percent problems
A lot of percent problems turn out to be easy when you give them a little
thought. In many cases, just remember the connection between percents and
fractions and you’re halfway home:

� Finding 100% of a number: Remember that 100% means the whole thing,
so 100% of any number is simply the number itself:

100% of 5 is 5

100% of 91 is 91

100% of 732 is 732

� Finding 50% of a number: Remember that 50% means half, so to find
50% of a number, just divide it by 2:

50% of 20 is 10

50% of 88 is 44

50% of 7 is 
2
7 (or 3

2
1 or 3.5)

� Finding 25% of a number: Remember that 25% equals 1⁄4, so to find 25%
of a number, divide it by 4:

25% of 40 is 10

25% of 88 is 22

25% of 15 is 
4

15 (or 3
4
3 or 3.75)

� Finding 20% of a number: Finding 20% of a number is handy if you like
the service you’ve received in a restaurant, because a good tip is 20% of
the check. Because 20% equals 1⁄5, you can find 20% of a number by divid-
ing it by 5. But I can show you an easier way:

To find 20% of a number, move the decimal point one place to the left
and double the result:

20% of 80 = 8 ⋅ 2 = 16

20% of 300 = 30 ⋅ 2 = 60

20% of 41 = 4.1 ⋅ 2 = 8.2

� Finding 10% of a number: Finding 10% of any number is the same as
finding 1⁄10 of that number. To do this, just move the decimal point one
place to the left:

10% of 30 is 3

10% of 41 is 4.1

10% of 7 is 0.7
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requires you to add and subtract decimals, which I discuss in Chapter 11.
Even though the decimals may look intimidating, this problem is fairly simple
to set up:

Antonia bought 4.53 pounds of beef and 3.1 pounds of lamb. Lance
bought 5.24 pounds of chicken and 0.7 pounds of pork. Which of them
bought more meat, and how much more?

To solve this problem, you first find out how much each person bought:

Antonia = 4.53 + 3.1 = 7.63

Lance = 5.24 + 0.7 = 5.94

You can already see that Antonia bought more than Lance. To find how much
more, subtract:

7.63 – 5.94 = 1.69

So Antonia bought 1.69 pounds more than Lance.

Splitting the vote: Percents
When percents represent answers in polls, votes in an election, or portions of
a budget, the total often has to add up to 100%. In real life, you may see such
info organized as a pie chart (which I discuss in Chapter 17). Solving prob-
lems about this kind of information often involves nothing more than adding
and subtracting percents. Here’s an example:

In a recent mayoral election, five candidates were on the ballot. Faber
won 39% of the vote, Gustafson won 31%, Ivanovich won 18%, Dixon won
7%, Obermayer won 3%, and the remaining votes went to write-in candi-
dates. What percentage of voters wrote in their selection?

The candidates were in a single election, so all the votes have to total 100%.
The first step here is just to add up the five percentages. Then subtract that
value from 100%:

39% + 31% + 18% + 7% + 3% = 98%

100% – 98% = 2%

Because 98% of voters voted for one of the five candidates, the remaining 2%
wrote in their selections.
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Problems about Multiplying Fractions 
In word problems, the word of almost always means multiplication. So when-
ever you see the word of following a fraction, decimal, or percent, you can
usually replace it with a times sign.

When you think about it, of means multiplication even when you’re not talking
about fractions. For example, when you point to an item in a store and say, “I’ll
take three of those,” in a sense you’re saying, “I’ll take that one multiplied by
three.”

The following examples give you practice turning word problems that include
the word of into multiplication problems that you can solve with fraction 
multiplication.

When you divide up a single thing — such as one pizza or one death-by-
chocolate cake — the word of still means to multiply; you’re technically 
multiplying each fraction by 1. For example, the fraction that represents half
of a pizza — that is, 1⁄2 of 1 pizza — is 1⁄2 ⋅ 1 = 1⁄2. Because anything times 1 is
itself, you don’t have to write the 1 at all — you can just add the fractions, as
I do earlier in “Sharing a pizza: Fractions.”

Renegade grocery shopping: Buying 
less than they tell you to
After you understand that the word of means multiplication, you have a power-
ful tool for solving word problems. For instance, you can figure out how much
you’ll spend if you don’t buy food in the quantities listed on the signs. Here’s
an example:

If beef costs $4 a pound, how much does 5⁄8 of a pound cost?

Here’s what you get if you simply change the of to a multiplication sign:

8
5

⋅ 1 pound of beef

That’s how much beef you’re buying. However, you want to know the cost.
Because the problem tells you that 1 pound = $4, you can replace 1 pound of
beef with $4:

= 
8
5

⋅ $4

Now you have an expression you can evaluate. Use the rules of multiplying
fractions from Chapter 10 and solve:
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After you know this trick, representing a lot of large numbers as powers of
ten is easy — just count the 0s! For example, the number 1 trillion —
1,000,000,000,000 — is a 1 with twelve 0s after it, so

1,000,000,000,000 = 1012

This trick may not seem like a big deal, but the higher the numbers get, the
more space you save by using exponents. For example, a really big number is
a googol, which is 1 followed by a hundred 0s. You can write this:

10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

As you can see, a number of this size is practically unmanageable. You can
save yourself some trouble and write 10100.

A 10 raised to a negative number is also a power of ten.

You can also represent decimals using negative exponents. For example,

10–1 = 0.1 10–2 = 0.01 10–3 = 0.001 10–4 = 0.0001

Although the idea of negative exponents may seem strange, it makes sense
when you think about it alongside what you know about positive exponents.
For example, to find the value of 107, start with 1 and make it larger by moving
the decimal point 7 spaces to the right: 

107 = 10,000,000

Similarly, to find the value of 10–7, start with 1 and make it smaller by moving
the decimal point 7 spaces to the left:

10–7 = 0.0000001

Negative powers of 10 always have one fewer 0 between the 1 and the deci-
mal point than the power indicates. In this example, notice that 10–7 has six 0s
between them.

As with very large numbers, using exponents to represent very small deci-
mals makes practical sense. For example, 

10–23 = 0.00000000000000000000001

As you can see, this decimal is easy to work with in its exponential form but
almost impossible to read otherwise.
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Writing in scientific notation
Here’s how to write any number in scientific notation:

1. Write the number as a decimal (if it isn’t one already).

Suppose you want to change the number 360,000,000 to scientific nota-
tion. First, write it as a decimal:

360,000,000.0

2. Move the decimal point just enough places to change this number to a
new number that’s between 1 and 10.

Move the decimal point to the right or left so that only one nonzero digit
comes before the decimal point. Drop any leading or trailing zeros as
necessary.

Using 360,000,000.0, only the 3 should come before the decimal point. So
move the decimal point eight places to the left, drop the trailing zeros,
and get 3.6:

360,000,000.0 becomes 3.6

3. Multiply the new number by 10 raised to the number of places you
moved the decimal point in Step 2.

You moved the decimal point eight places, so multiply the new number
by 108:

3.6 ⋅ 108

4. If you moved the decimal point to the right in Step 2, put a minus sign
on the exponent.

You moved the decimal point to the left, so you don’t have to take any
action here. Thus, 360,000,000 in scientific notation is 3.6 ⋅ 108.

Changing a decimal to scientific notation basically follows the same process.
For example, suppose you want to change the number 0.00006113 to scien-
tific notation:

1. Write 0.00006113 as a decimal (this step’s easy, because it’s already a
decimal):

0.00006113

2. To change 0.00006113 to a new number between 1 and 10, move the
decimal point five places to the right and drop the leading zeros:

6.113
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1. Multiply 6.02 by 9 to find the decimal part of the answer:

6.02 ⋅ 9 = 54.18

2. Multiply 1023 by 10–28 by adding the exponents (check Chapter 4 if you
need info on adding negative numbers):

1023
⋅ 10–28 = 1023 + –28 = 10–5

3. Write the answer as the product of the two numbers:

54.18 ⋅ 10–5

4. Because 54.18 is greater than 10, move the decimal point one place to
the left and add 1 to the exponent:

5.418 ⋅ 10–4

Note: In decimal form, this number equals 0.0005418.

Scientific notation really pays off when you’re multiplying very large and very
small numbers. If you’d tried to multiply the numbers in the preceding exam-
ple the usual way, here’s what you would’ve been up against:

602,000,000,000,000,000,000,000 ⋅ 0.0000000000000000000000000009

As you can see, scientific notation makes the job a lot easier.
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Estimating longer distances and speed
Here’s how to convert kilometers to miles: 1 kilometer ≈ 0.62 miles. For a ball-
park estimate, you can remember that 1 kilometer is about 1⁄2 a mile. By the
same token, 1 kilometer per hour is about 1⁄2 mile per hour.

This guideline tells you that if you live 2 miles from the nearest supermarket,
then you live about 4 kilometers from there. A marathon of 26 miles is about
52 kilometers. And if you run on a treadmill at 6 miles per hour, then you can
run at about 12 kilometers per hour. By the same token, a 10 kilometer race is
about 5 miles. If the Tour de France is about 4,000 kilometers, then it’s about
2,000 miles. And if light travels about 300,000 kilometers per second, then it
travels about 150,000 miles per second.

Approximating volume: 1 liter is about 1 quart (1⁄4 gallon)
Here’s how to convert liters to gallons: 1 liter ≈ 0.26 gallons. A good estimate
here is that 1 liter is about 1 quart (that is, there are about 4 liters to the
gallon).

Using this estimate, a gallon of milk is 4 quarts, so it’s about 4 liters. If you
put 10 gallons of gasoline in your tank, this is about 40 liters. In the other
direction, if you buy a 2-liter bottle of cola, you have about 2 quarts. If you
buy an aquarium with a 100-liter capacity, it holds about 25 gallons of water.
And if a pool holds 8,000 liters of water, it holds about 2,000 gallons.

Estimating weight: 1 kilogram is about 2 pounds
Here’s how to convert kilograms to pounds: 1 kilogram ≈ 2.20 pounds. For
estimating, figure that 1 kilogram is equal to about 2 pounds.

By this estimate, a 5-kilogram bag of potatoes weighs about 10 pounds. If you
can bench press 70 kilograms, then you can bench press about 140 pounds.
And because a liter of water weighs exactly 1 kilogram, you know that a quart
of water weighs about 2 pounds. Similarly, if a baby weighs 8 pounds at birth,
he or she weighs about 4 kilograms. If you weigh 150 pounds, then you weigh
about 75 kilograms. And if your New Year’s resolution is to lose 20 pounds,
then you want to lose about 10 kilograms.

Estimating temperature
The most common reason for estimating temperature in Celsius is in connec-
tion with the weather. The formula for converting from Celsius to Fahrenheit
is kind of messy:

Fahrenheit = Celsius ⋅ 9⁄5 + 32

Instead, use the handy chart in Table 15-3.
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Getting on the Plane: Points, 
Lines, Angles, and Shapes

Plane geometry is the study of figures on a two-dimensional surface — that is,
on a plane. You can think of the plane as a piece of paper with no thickness at
all. Technically, a plane doesn’t end at the edge of the paper — it continues
forever.

In this section, I introduce you to four important concepts in plane geometry:
points, lines, angles, and shapes (such as squares, circles, triangles, and so
forth). 

Making some points
A point is a location on a plane. It has no size or shape. Although in reality a
point is too small to be seen, you can represent it visually in a drawing by
using a dot.

When two lines intersect, as shown above, they share a single point.
Additionally, each corner of a polygon is a point. (See below for more on lines
and polygons.)

Knowing your lines
A line — also called a straight line — is pretty much what it sounds like; it
marks the shortest distance between two points, but it extends infinitely in
both directions. It has length but no width, making it a one-dimensional (1-D)
figure.
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Angles that have fewer than 90° — that is, angles that are sharper than a
right angle — are called acute angles, like this one:

Angles that measure greater than 90° — that is, angles that aren’t as sharp as
a right angle — are called obtuse angles, as seen here:

When an angle is exactly 180°, it forms a straight line and is called a straight
angle.

Shaping things up
A shape is any closed geometrical figure that has an inside and an outside.
Circles, squares, triangles, and larger polygons are all examples of shapes. 
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Note: Because 2 ⋅ r is the same as the diameter, you also can write the for-
mula as C = π ⋅ d.

The symbol π is called pi (pronounced pie). It’s just a number whose approxi-
mate value is as follows (the decimal part of pi goes on forever, so you can’t
get an exact value for pi):

π ≈ 3.14

So given a circle with a radius of 5 mm, you can figure out the approximate
circumference:

C ≈ 2 ⋅ 3.14 ⋅ 5 mm = 31.4 mm

The formula for the area (A) of a circle also uses π:

A = π ⋅ r 2

Here’s how to use this formula to find the approximate area of a circle with a
radius of 5 mm:

A ≈ 3.14 ⋅ (5 mm)2 = 3.14 ⋅ 25 mm2 = 78.5 mm2

Measuring triangles
In this section, I discuss how to measure the perimeter and area of all triangles.
Then, I show you a special feature of right triangles that allows you to measure
them more easily.

Finding the perimeter and area of a triangle

Mathematicians have no special formula for finding the perimeter of a 
triangle — they just add up the lengths of the sides.

To find the area of a triangle, you need to know the length of one side — the
base (b for short) — and the height (h). Note that the height forms a right
angle with the base. Figure 16-13 shows a triangle with a base of 5 cm and a
height of 2 cm:

5 cm

2 cm
Figure 16-13:

The base

and height

of a triangle.
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Reading a bar graph is easy after you get used to it. Here are a few types of
questions someone could ask about the bar graph in Figure 17-1:

� Individual values: How many new clients does Jay have? Find the bar
representing Jay’s clients and notice that he has 23 new clients.

� Differences in value: How many more clients does Rita have compared
with Dwayne’s? Notice that Rita has 20 new clients and Dwayne has 18,
so she has 2 more than he does.

� Totals: Together, how many clients do the three women have? Notice that
the three women — Edna, Iris, and Rita — have 25, 16, and 20 new
clients, respectively, so they have 61 new clients altogether.

Pie chart
A pie chart, which looks like a divided circle, shows you how a whole object
is cut up into parts. Pie charts are most often used to represent percentages.
For example, Figure 17-2 is a pie chart representing Eileen’s monthly expenses.

You can tell at a glance that Eileen’s largest expense is rent and that her
second largest is her car. Unlike the bar graph, the pie chart shows numbers
that are dependent upon each other. For example, if Eileen’s rent increases to
30% of her monthly income, she’ll have to decrease her spending in at least
one other area.

Here are a few typical questions you may be asked about a pie chart:

� Individual percentages: What percentage of her monthly expenses does
Eileen spend on food? Find the slice that represents what Eileen spends
on food, and notice that she spends 10% of her income there.

Rent 25%
Car 20%

Bills 15%

Savings 15%Food 10%

Clothes 5%

Entertainment 5%

Miscellaneous 5%
Figure 17-2:

Eileen’s

monthly

expenses.
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For more-complex conversion problems, a good tool is the conversion chain.
A conversion chain links together a sequence of unit conversions.

Setting up a short chain
Here’s a problem that shows you how to set up a short conversion chain to
make a conversion you won’t find a specific equation for:

Vendors at the Fragola County Strawberry Festival sold 7 tons of straw-
berries in a single weekend. How many 1-ounce servings of strawberries
is that?

You don’t have an equation to convert tons directly to ounces. But you do have
one to convert tons to pounds and another to convert pounds to ounces. You
can use these equations to build a bridge from one unit to another:

tons → pounds → ounces

So here are the two equations that you’ll want to use:

1 ton = 2,000 lbs.

1 lb. = 16 oz.

To convert tons to pounds, note that these fractions equal 1, because the
numerator (top number) equals the denominator (bottom number):

2,000 lbs.
1 ton or

1 ton
2,000 lbs.

To convert pounds to ounces, note that these fractions equal 1:

16 oz.
1 lb. or

1 lb.
16 oz.

You could do this conversion in two steps. But when you know the basic
idea, you set up a conversion chain instead. To help make this idea clear, take
a look at how to get from tons to ounces:

tons → pounds → ounces

So here’s how to set up a conversion chain to turn 7 tons into pounds and
then into ounces. Because you already have tons on top, you want the tons-
and-pounds fraction that puts ton on the bottom. And because that fraction
puts pounds on the top, use the pounds-and-ounces fraction that puts pound
on the bottom:

1
7 tons

1 ton
2,000 lbs.

1 lb.
16 oz.

$ $
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As you can see, I drew a circle for the fountain and labeled its diameter as
32 feet. The outside edge of the path around the fountain is also a circle, and
its circumference is 120 feet. The problem is asking for the width of the path.
The picture shows you that the path’s width is the distance from the inner
circle to the outer circle.

The radius of a circle is the distance from its center to the circle itself (see
Chapter 16). So if you know the radius of each circle, you can find the width
of the path by subtracting:

Width of path = radius of outer circle – radius of inner circle 

This word equation is the key to the problem. Look at the diagram and make
sure you understand it before continuing.

You already know that the diameter of the inner circle is 32 feet, so you can
find its radius using this formula from Chapter 16, where d is the diameter
and r is the radius:

d = 2 ⋅ r

Plugging in the diameter of the inner circle, you get the following:

32 ft. = 2 ⋅ radius of inner circle

You can probably solve this problem in your head:

Radius of inner circle = 16 ft.

You also know the circumference of the outer circle, so you can find its radius
using this formula from Chapter 16, where C is the circumference and r is the
radius:

C = 2 ⋅ π ⋅ r

Plugging in the circumference and 3.1 for π gives you

120 ft. = 2 ⋅ 3.1 ⋅ radius of outer circle

This equation can be simplified a little as follows:

120 ft. = 6.2 ⋅ radius of outer circle
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Chapter 19

Figuring Your Chances:
Statistics and Probability

In This Chapter
� Knowing how statistics works with both qualitative and quantitative data

� Finding out how to calculate a percentage and the mode of a sample 

� Calculating the mean and median

� Finding the probability of an event

Statistics and probability are two of the most important and widely used
applications of math. They’re applicable to virtually every aspect of the

real world — business, biology, city planning, politics, meteorology, and
many more areas of study. Even physics, once thought to be devoid of uncer-
tainty, now relies on probability.

In this chapter, I give you a basic understanding of these two mathematical
ideas. First, I introduce you to statistics and the important distinction between
qualitative and quantitative data. I show you how to work with both types of
data to find meaningful answers. Then I give you the basics of probability. I
show you how the probability that an event will occur is always a fraction from
0 to 1. After that, I demonstrate how to build this fraction by counting both
favorable outcomes and possible outcomes. Finally, I put these ideas to work by
showing you how to calculate the probability of tossing coins and rolling dice.

Gathering Data Mathematically:
Basic Statistics

Statistics is the science of gathering and drawing conclusions from data,
which is information that’s measured objectively in an unbiased, repro-
ducible way.
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This time, the middle value is 18, so 18 is the median score.

If you have an even number of values in the data set, put the numbers in
order and find the mean of the two middle numbers in the list (see the preced-
ing section for details on the mean). For instance, consider the following:

2 3 5 7 9 11

The two center numbers are 5 and 7. Add them together to get 12 and then
divide by 2 to get their mean. The median in this list is 6.

Now recall the company president who makes $19,010,000 a year and his
99 employees who each earn $10,000. Here’s how this data looks:

10,000 10,000 10,000 ... 10,000 19,010,000

As you can see, if you were to write out all 100 salaries, the center numbers
would obviously both be 10,000. The median salary is $10,000, and this result
is much more reflective of what you’d probably earn if you were to work at
this company.

Looking at Likelihoods: Basic Probability
Probability is the mathematics of deciding how likely an event is to occur. For
example,

� What’s the likelihood that the lottery ticket I bought will win?

� What’s the likelihood that my new car will need repairs before the 
warranty runs out?

� What’s the likelihood that more than 100 inches of snow will fall in
Manchester, New Hampshire, this winter?

Probability has a wide variety of applications in insurance, weather prediction,
biological sciences, and even physics.

The study of probability started hundreds of years ago when a group of
French noblemen began to suspect that math could help them turn a profit,
or at least not lose so heavily, in the gambling halls that they frequented.

You can read all about the details of probability in Probability For Dummies
(Wiley). In this section, I give you a little taste of this fascinating subject.
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Figuring the probability
The probability that an event will occur is a fraction whose numerator (top
number) and denominator (bottom number) are as follows (for more on frac-
tions, flip to Chapter 9):

Total number of possible outcomes
Number of favorable outcomes

In this case, a favorable outcome is simply an outcome in which the event
you’re examining does happen. In contrast, a possible outcome is an outcome
that can happen.

For example, suppose you want to know the probability that a tossed coin will
land heads up. Notice that there are two possible outcomes (heads or tails),
but only one of these outcomes is favorable — the outcome in which heads
comes up. To find the probability of this event, make a fraction as follows:

Total number of outcomes
Number of favorable outcomes

2
1

=

So the probability that the coin will land heads up is 1⁄2.

So what’s the probability that when you roll a die, the number 3 will land face
up? To figure this one out, notice that there are six possible outcomes (1, 2, 3,
4, 5, or 6), but in only one of these does 3 land face up. To find the probability
of this outcome, make a fraction as follows:

Total number of outcomes
Number of favorable outcomes

6
1

=

So the probability that the number 3 will land face up is 1⁄6.

And what’s the probability that if you pick a card at random from a deck, it’ll
be an ace? To figure this out, notice that there are 52 possible outcomes (one
for each card in the deck), but in only four of these do you pick an ace. So

Total number of outcomes
Number of favorable outcomes

52
4

=

So the probability that you’ll pick an ace is 4⁄52, which reduces to 1⁄13 (see
Chapter 9 for more on reducing fractions).

Probability is always a fraction or decimal from 0 to 1. When the probability of
an outcome is 0, the outcome is impossible. When the probability of an out-
come is 1, the outcome is certain.
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Chapter 21

Enter Mr. X: Algebra and
Algebraic Expressions

In This Chapter
� Meeting Mr. X head-on 

� Understanding how a variable such as x stands for a number

� Using substitution to evaluate an algebraic expression 

� Identifying and rearranging the terms in any algebraic expression

� Simplifying algebraic expressions

You never forget your first love, your first car, or your first x. Unfortunately
for some folks, remembering their first x in algebra is similar to remem-

bering their first love who stood them up at the prom or their first car that
broke down someplace in Mexico. 

The most well-known fact about algebra is that it uses letters — like x — to
represent numbers. So, if you have a traumatic x-related tale, all I can say is
that the future will be brighter than the past.

What good is algebra? That’s a common question, and it deserves a decent
answer. Algebra is used for solving problems that are just too difficult for
ordinary arithmetic. And because number crunching is so much a part of the
modern world, algebra is everywhere (even if you don’t see it): architecture,
engineering, medicine, statistics, computers, business, chemistry, physics,
biology, and of course higher math. Anywhere that numbers are useful, alge-
bra is there. That’s why virtually every college and university insists that you
leave (or enter) with at least a passing familiarity with algebra.
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Variable Part Examples of Similar Terms

x 4x 12x 99.9x

x2 6x2 –20x2

3
8 x2

y y 1,000y πy

xy –7xy 800xy
7
22 xy

x3y3 3x3y3 –111x3y3 3.14x3y3

As you can see, in each example, the variable part in all three similar terms
is the same. Only the coefficient changes, and it can be any real number: 
positive or negative, whole number, fraction, decimal, or even an irrational
number such as π. (For more on real numbers, see Chapter 25.)

Considering algebraic terms 
and the Big Four
In this section, I get you up to speed on how to apply the Big Four to alge-
braic expressions. For now, just think of working with algebraic expressions
as a set of tools that you’re collecting, for use when you get on the job. You
find how useful these tools are in Chapter 22, when you begin solving alge-
braic equations.

Adding terms
Add similar terms by adding their coefficients and keeping the same variable
part.

For example, suppose you have the expression 2x + 3x. Remember that 2x is
just shorthand for x + x, and 3x means simply x + x + x. So when you add
them up, you get the following:

= x + x + x + x + x = 5x

As you can see, when the variable parts of two terms are the same, you add
these terms by adding their coefficients: 2x + 3x = (2 + 3)x. The idea here is
roughly similar to the idea that 2 apples + 3 apples = 5 apples.

You cannot add non-similar terms. Here are some cases in which the variables
or their exponents are different:

2x + 3y

2yz + 3y

2x2 + 3x
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Multiplying terms
Unlike adding and subtracting, you can multiply non-similar terms. Multiply
any two terms by multiplying their coefficients and combining — that is, by
collecting or gathering up — all the variables in each term into a single term,
as I show you below.

For example, suppose you want to multiply 5x(3y). To get the coefficient, 
multiply 5 ⋅ 3. To get the algebraic part, combine the variables x and y:

= 5(3)xy = 15xy

Now suppose you want to multiply 2x(7x). Again, multiply the coefficients
and collect the variables into a single term:

= 7(2)xx = 14xx

Remember that x2 is shorthand for xx, so you can write the answer more 
efficiently:

= 14x2

Here’s another example. Multiply all three coefficients together and gather up
the variables:

2x2(3y)(4xy)

= 2(3)(4)x2xyy

= 24x3y2

As you can see, the exponent 3 that’s associated with x is just the count of
how many x’s appear in the problem. The same is true of the exponent 2
associated with y.

A fast way to multiply variables with exponents is to add the exponents
together. For example:

(x4y3)(x2y5)(x6y) = x12y9

In this example, I added the exponents of the x’s (4 + 2 + 6 = 12) to get the
exponent of x in the solution. Similarly, I added the exponents of the y’s 
(3 + 5 + 1 = 9 — don’t forget that y = y1!) to get the exponent of y in the solution. 
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Now you can begin canceling variables. I do this in two steps as before:

xxyyz
xxyzzz
4

3
=

At this point, just cross out any occurrence of a variable that appears in both
the numerator and denominator:

y
zz

y
z

4
3

4
3 2

=

=

You can’t cancel out variables or coefficients if either the numerator or
denominator has more than one term in it.

Simplifying Algebraic Expressions
As algebraic expressions grow more complex, simplifying them can make
them easier to work with. Simplifying an expression means (quite simply!)
making it smaller and easier to manage. You see how important simplifying
expressions becomes when you begin solving algebraic equations. 

For now, think of this section as a kind of algebra toolkit. Here, I show you
how to use these tools. In Chapter 22, I show you when to use them.

Combining similar terms
When two algebraic terms are similar (when their variables match), you can
add or subtract them (see the earlier “Considering algebraic terms and the Big
Four” section). This feature comes in handy when you’re trying to simplify an
expression. For example, suppose you’re working with following expression:

4x – 3y + 2x + y – x + 2y

As it stands, this expression has six terms. But three terms have the variable
x and the other three have the variable y. Begin by rearranging the expres-
sion so that all similar terms are grouped together:

= 4x + 2x – x – 3y + y + 2y
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To remove parentheses without a sign, multiply the term outside the paren-
theses by every term inside the parentheses; then remove the parentheses.
When you follow those steps, you’re using the distributive property.

Here’s an example:

2(3x – 5y + 4)

In this case, multiply 2 by each of the three terms inside the parentheses:

= 2(3x) + 2(–5y) + 2(4)

For the moment, this expression looks more complex than the original one,
but now you can get rid of all three sets of parentheses by multiplying:

= 6x – 10y + 8

Multiplying by every term inside the parentheses is simply distribution of
multiplication over addition — also called the distributive property — which I
discuss in Chapter 4.

As another example, suppose you have the following expression:

–2x(–3x + y + 6) + 2xy – 5x2

Begin by multiplying –2x by the three terms inside the parentheses:

= –2x(–3x) – 2x(y) – 2x(6) + 2xy – 5x2

The expression looks worse than when you started, but you can get rid of
all the parentheses by multiplying:

= 6x2 – 2xy – 12x + 2xy – 5x2

Now you can combine similar terms. I do this in two steps, first rearranging
and then combining:

= 6x2 – 5x2 – 2xy + 2xy – 12x

= x2 – 12x

Parentheses by FOILing 
Sometimes, expressions have two sets of parentheses next to each other
without a sign between them. In that case, you need to multiply every term
inside the first set by every term inside the second.
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When you have two terms inside each set of parentheses, you can use a
process called FOILing. The word FOIL is an acronym to help you make sure
you multiply the correct terms. It stands for First, Outside, Inside, and Last.
Here’s how the process works:

1. Start out by multiplying the two First terms in the parentheses.

Suppose you want to simplify the expression (2x – 2)(3x – 6). The first
term in the first set of parentheses is 2x, and 3x is the first term in the
second set of parentheses. Therefore, multiply 2x by 3x:

(2x – 2)(3x – 6) 2x(3x) = 6x2

2. Then multiply the two Outside terms.

The two outside terms, 2x and –6, are on the ends:

(2x – 2)(3x – 6) 2x(–6) = –12x

3. Next, multiply the two Inside terms.

The two terms in the middle are –2 and 3x:

(2x – 2)(3x – 6) –2(3x) = –6x

4. Finally, multiply the two Last terms.

The last term in the first set of parentheses is –2, and –6 is last term in
the second set:

(2x – 2)(3x – 6) –2(–6) = 12

Add these four results together to get the simplified expression:

6x2 – 12x – 6x + 12

In this case, you can simplify this expression still further by combining the
similar terms –12x and –6x:

= 6x2 – 18x + 12

Notice that during this process, you multiply every term inside one set of
parentheses by every term inside the other set. FOILing just helps you keep
track and make sure you’ve multiplied everything.

FOILing is really just an application of the distributive property, which I dis-
cuss in the section before this one. In other words, (2x – 2)(3x – 6) is really
the same thing as 2x(3x – 6) + -2(3x – 6) when distributed. Then, distributing
again gives you 6x2 – 6x – 12x + 12.

313Chapter 21: Enter Mr. X: Algebra and Algebraic Expressions

Preview from Notesale.co.uk

Page 330 of 385



Chapter 22

Unmasking Mr. X:
Algebraic Equations

In This Chapter
� Using variables (such as x) in equations 

� Knowing some quick ways to solve for x in simple equations

� Understanding the balance-scale method for solving equations

� Rearranging terms in an algebraic equation 

� Isolating algebraic terms on one side of an equation

� Removing parentheses from an equation

� Cross multiplying to remove fractions

When it comes to algebra, solving equations is the main event. 

Solving an algebraic equation means finding out what number the variable
(usually x) stands for. Not surprisingly, this process is called solving for x, and
when you know how to do it, your confidence — not to mention your grades —
in your algebra class will soar through the roof.

That’s what this chapter is all about. First, I show you a few informal methods
to solve for x when an equation isn’t too difficult. Then, I show you how to
solve more difficult equations by thinking of them as a balance scale. 

The balance-scale method is really the heart of algebra (yes, algebra has a
heart after all!). After you understand this simple idea, you’re ready to solve
more complicated equations using all the tools I show you in Chapter 21,
such as simplifying expressions and removing parentheses. You find out how
to extend these skills to algebraic equations. Finally, I show you how cross
multiplying (see Chapter 9) can make solving algebraic equations with frac-
tions a piece of cake. 

By the end of this chapter, you should have a solid grasp of a bunch of ways
to solve equations for the elusive and mysterious x.
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Using the balance scale to isolate x
The simple idea of balance is at the heart of algebra, and it enables you to
find out what x is in many equations. When you solve an algebraic equation,
the goal is to isolate x — that is, to get x alone on one side of the equation
and some number on the other side. In algebraic equations of middling diffi-
culty, this is a three-step process:

1. Get all constants (non-x terms) on one side of the equation. 

2. Get all x-terms on the other side of the equation.

3. Divide to isolate x.

For example, take a look at the following problem:

11x – 13 = 9x + 3

As you follow the steps, notice how I keep the equation balanced at each step:

1. Get all of the constants on one side of the equation by adding 13 to both
sides of the equation:

x x

x x

11 13 9 3

13 13

11 9 16

- = +

+ +

= +

Because you’ve obeyed the rules of the balance scale, you know that
this new equation is also correct. And now, the only non-x term (16) is
on the right side of the equation. 

2. Get all of the x-terms on the other side by subtracting 9x from both sides
of the equation:

x x

x x

x

11 9 16

9 9

2 16

= +

- -

=

Again, the balance is preserved, so the new equation is correct. 

3. Divide by 2 to isolate x:

x

x
2

2
2

16

8

=

=
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The Real Number Line
The number line has been around for a very long time, and it’s one of the first
visual aids that teachers use to teach kids about numbers. Every point on the
number line stands for a number. Well, okay, that sounds pretty obvious, but
strange to say, this concept wasn’t fully understood for thousands of years.

The Greek philosopher Zeno of Elea posed this problem, called Zeno’s
Paradox: In order to walk across the room, you have to first walk half the dis-
tance (1⁄2) across the room. Then you have to go half the remaining distance
(1⁄4). After that, you have to go half the distance that still remains (1⁄8). This
pattern continues forever:

1⁄2 1⁄4 1⁄8 1⁄16
1⁄32

1⁄64
1⁄128

1⁄256 ...

So you can never get to the other side of the room.

Obviously, in the real world, you can and do walk across rooms all the time.
But from the standpoint of math, Zeno’s Paradox and other similar paradoxes
remained unanswered for about 2,000 years.

The basic problem was this: All the fractions listed in the preceding sequence
are between 0 and 1 on the number line. And there are an infinite number of
them. But how can you have an infinite number of numbers in a finite space?

Mathematicians of the 19th century — Augustin Cauchy, Richard Dedekind,
Karl Weierstrass, and Georg Cantor foremost among them — solved this 
paradox. The result was real analysis, the advanced mathematics of the real
number line. 

The Imaginary Number i
The imaginary numbers are a set of numbers not found on the real number
line. If that idea sounds unbelievable — where else would they be? — don’t
worry: For thousands of years, mathematicians didn’t believe in them, either.
But real-world applications in electronics, particle physics, and many other
areas of science have turned skeptics into believers. So if your summer plans
include wiring your secret underground lab or building a flux capacitor for
your time machine — or maybe just studying to get a degree in electrical engi-
neering — you’ll find that imaginary numbers are too useful to be ignored.

See Chapter 25 for info on imaginary and complex numbers.
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Moving through Transcendental Numbers
A transcendental number, in contrast to an algebraic number (see the preced-
ing section), is never the solution of a polynomial equation. Like the irrational
numbers, transcendental numbers are also a sort of catchall: Every number
on the number line that isn’t algebraic is transcendental.

The best known transcendental number is π, whose approximate value is
3.1415926535... . Its uses begin in geometry but extend to virtually all areas of
mathematics. (See Chapters 16 and 24 for more on π.)

Other important transcendental numbers come about when you study
trigonometry, the math of right triangles. Sines, cosines, tangents, and other
trigonometric functions are often transcendental numbers.

Another important transcendental number is e, whose approximate value is
2.7182818285... . The number e is the base of the natural logarithm, which you
probably won’t use until you get to pre-calculus or calculus. People use e to
do problems on compound interest, population growth, radioactive decay,
and the like.

Getting Grounded in Real Numbers
The set of real numbers is the set of all rational and irrational numbers (see the
earlier sections). The real numbers comprise every point on the number line. 

Like the rational numbers (see “Knowing the Rationale behind Rational
Numbers,” earlier in this chapter), the set of real numbers is closed under the
Big Four operations. That is, if you take any two real numbers and add, sub-
tract, multiply, or divide them, the result is always another real number.

Trying to Imagine Imaginary Numbers
An imaginary number is any real number multiplied by 1- .

To understand what’s so strange about imaginary numbers, it helps to know
a bit about square roots. The square root of any number is a second number
that, when multiplied by itself, gives you the first number. For example, the
square root of 9 is 3 because 3 ⋅ 3 = 9. And the square root of 9 is also –3
because –3 ⋅ –3 = 9. (See Chapter 4 for more on square roots and multiplying
negative numbers.)
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• Symbols and Numerics •
≈ (approximately equals), 34–35, 67
{} (braces), 288
[=/] (doesn’t equal), 66
÷ (division sign), 51
· (dot), 44–45
... (ellipsis), 288
= (equal to), 343–344
— (fraction bar), 51
/ (fraction slash), 51
> (greater than), 67
∞ (infinity)

defined, 20
overview, 345

< (less than), 67
– (minus sign), 39
9 times table, 49
() (parentheses)

order of precedence in expressions with,
79–82

overview, 45
removing from algebraic expressions,

310–333
removing from equations, 323–326

% (percent)
changing decimals to, 181
circle, 188–191
converting fractions into, 182–183
converting to decimals, 181
converting to fractions, 182
decreases, 201–204
defined, 179
greater than, 100, 180
increases, 201–204
multiplying, 198–201
solving problems, 183–186
types of problems, 187–188
word problems, 195, 201–204

+ (plus sign), 38

π (pi)
measuring, 241
overview, 343

2-D shapes
measuring, 239–240
overview, 233–236

3-D
measuring in, 246–250
shapes with curves, 238–239

x (algebraic symbol)
defined, 298
isolating, 320–327
using in algebraic equations, 298, 316

x (multiply sign), 44

• A •
A (area). See also formulas

circle formula, 241
defined, 239
parallelogram formula, 245
rectangle formula, 244
rhombus formula, 245
square formula, 243
trapezoid formula, 246, 268
triangle formula, 242, 268

absolute value, 70
acute angles, 232
addends, 38
adding

algebraic terms, 305–306
arithmetic equations, 76
associative operations, 60
carrying digits, 38–39
commutative operations, 59
decimals, 164–165
exponents, 210
expressions, 76
fractions, 136–143
inverse operations, 58–59
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data
qualitative, 277–279
qualitative versus quantitative, 276–277
quantitative, 279–282

Deca-, ten metric prefix, 221
Deci-, ten metric prefix, 221
decimal point, moving, 161–162
decimals

adding, 164–165
changing fractions to, 174–177
converting to fractions, 172–174
dividing, 168–171
leading zeros, 159–160
money and, 156–158
moving the decimal point, 161–162
multiplying, 166–167, 198–201
overview, 156–163
place value, 158–159
repeating, 176
rounding, 162–163
subtracting, 166
terminating, 177
trailing zeros, 159–161
word problems, 194–195

decompose, 16
denominators

adding fractions, 137–143
adding mixed numbers, 149–151
defined, 122
subtracting fractions, 144–147
subtracting mixed numbers, 151–153

diameter (d). See also formulas
circle formula, 240–241
defined, 233
measuring, 240–241

difference, 40
digital root, finding, 99
digits

carrying, 38–39
numbers versus, 30

distance
estimating, 223–224
units of, 221

distribution
algebraic expressions, 311–312
overview, 61

distributive property
of multiplication over addition, 61
overview, 202

dividend, 51, 169
dividing

algebraic terms, 308–309
arithmetic equations, 77
decimals, 168–171
expressions, 77
fractions, 136
inverse operations, 58–59
long, 52–53
mixed numbers, 147–148
negative numbers, 64
noncommutative operations, 59
number-line, 23–24
overview, 51–54
remainders, 54
symbols, 51
units, 65–66

divisibility
checking, 99–102
composite numbers, 102–104
prime numbers, 102–104
tricks, 97–102

divisible, 97
division. See dividing
÷ (division sign), 51
divisor, 51
[=/] (doesn’t equal), 66
· (dot), 44–45
drawing, lines, 257–258

• E •
elements, 288, 341
... (ellipsis), 288
empty sets

defined, 19
overview, 290–291

English system of measurement, 217–220
equal sets, 289–290
= (equal to), overview, 343–344
equality, properties, 72
equations. See also algebraic equations

adding arithmetic, 76
defined, 71, 316
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negative numbers, 21
overview, 18, 346
subtracting, 18–19
zero, 19–20

number sequences
composite numbers, 15–16
counting by numbers, 13–14
even, 13
exponents, 17–18
odd, 13
overview, 12
prime numbers, 16
square numbers, 14

number sets
algebraic numbers, 350
complex numbers, 352–353
counting numbers, 348
imaginary numbers, 351–352
integers, 348–349
irrational numbers, 349–350
natural numbers, 348
rational numbers, 349
real numbers, 351
subsets, 353
transcendental numbers, 351
transfinite numbers, 353–354
types, 347–354

numbers. See also numerals
algebraic, 350
base, 68
complex, 352–353
composite, 15–16, 102–104
condensing with scientific notation,

207–215
counting, 18, 25, 26, 348
defined, 355
digits versus, 30
estimating, 34–35
even, 13
Hindu-Arabic, 30
imaginary, 346, 351–352
invention, 12
irrational, 349–350
long, 32
mixed, 125, 148–151

natural, 18, 25, 26, 348
negative, 61–64
odd, 13
prime, 102–104, 342
rational, 25, 27, 349
real, 25, 351
rounding, 33–34
sets of, 25–27, 291
transcendental, 351
transfinite, 353–354

numerator, 122

• O •
obtuse angles, 232
odd numbers, 13
ones, fractions, 124–125
operations

associative, 60
commutative, 59
inverse, 58–59
on sets, 291–294

order of magnitude, 213
order of operations

applying to expressions, 75–78
defined, 72
expressions with exponents, 78–79
overview, 74–75

order of precedence. See also order of
operations

expressions with parentheses, 79–82
organization, of this book, 3–6
origin, 255
ounces, fluid ounces versus, 219
outcomes, counting, 284–286

• P •
P (perimeter). See also formulas

overview, 233, 239
parallelogram formula, 245
rectangle formula, 244
rhombus formula, 244
square formula, 243

parallel, 231
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pyramids, finding the volume of, 249–250
Pythagorean theorem, 242–243

• Q •
Q subset, 353
quadrilaterals

defined, 234
types, 234–235

qualitative data
defined, 276
working with, 277–279

quantitative data
defined, 276–277
working with, 279–282

quotient, 51

• R •
r (radius)

defined, 233, 247
measuring, 240–241

R subset, 353
radical. See square root
radius (r)

defined, 233, 247
measuring, 240–241

rational numbers
defined, 25
overview, 349
set, 27

ray, 231
reading, long numbers, 32
real number line. See number–line
real numbers

defined, 25
overview, 351

reciprocal fractions, 124
rectangles

area formula, 244
defined, 235
measuring, 243–244
perimeter formula, 244

reducing fractions, 127–129
reflexivity, 72

regular polygon, 236
relative complement, of sets, 293
remainder, 54
removing, parentheses from equations,

323–326
repeating decimals, 176
rhombus

area formula, 245
defined, 235
measuring, 244–245
perimeter formula, 244

right angle, 232
right triangle, 234
Roman numerals, 359–360
root. See square root
rounding

conversion equations, 265–267
decimals, 162–163
numbers, 33–34

Rumsey, Deborah
Probability For Dummies, 282
Statistics For Dummies, 276

• S •
s (length of a square’s side), measuring, 243
scalene triangle, 234
scientific notation

condensing numbers with, 207–215
defined, 210
multiplying with, 214–215
order of magnitude, 213
powers of ten as exponents, 208–210
writing in, 211–215

sets
cardinality of, 289
complement, 293–294
defined, 25, 287, 341
elements, 288–289
empty, 290–291
equal, 289–290
intersection, 292–293
of numbers, 25–27, 291
operations on, 291–294
overview, 288
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