3) When $\lambda < 0, \lambda \underline{a}$ is, $|\underline{a}|$ like $-\lambda$ time big and opposite to the same vector a's direction. That means $-\underline{a}$ is a vector that parallel, same proportional and opposite to \underline{a} . When we have to addition 2 vectors \underline{b} and \underline{b} in picture (1), firstly we numbered those lines, \underline{b} and \underline{b} as AB The wood those 2 vectors and solution (2) (direction of arrows should flow without any opposite turnings). After we can drow a line from O to B and then \overrightarrow{OB} vector equal to addition of \underline{a} and \underline{b} . $$\overrightarrow{OB} = \underline{a} + \underline{b}$$ Also we write this, If $$\overrightarrow{OB} = \underline{a} + \underline{b}$$, $\{\overrightarrow{OA} = \underline{a} \text{ and } \overrightarrow{AB} = \underline{b}\}$ $$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$ This is the Triangle law of vector addictive.