3) When $\lambda < 0, \lambda \underline{a}$ is, $|\underline{a}|$ like $-\lambda$ time big and opposite to the same vector a's direction.

That means $-\underline{a}$ is a vector that parallel, same proportional and opposite to \underline{a} .

When we have to addition 2 vectors \underline{b} and \underline{b} in picture (1), firstly we numbered those lines, \underline{b} and \underline{b} as AB

The wood those 2 vectors and solution (2) (direction of arrows should flow without any opposite turnings).

After we can drow a line from O to B and then \overrightarrow{OB} vector equal to addition of \underline{a} and \underline{b} .

$$\overrightarrow{OB} = \underline{a} + \underline{b}$$

Also we write this,

If
$$\overrightarrow{OB} = \underline{a} + \underline{b}$$
, $\{\overrightarrow{OA} = \underline{a} \text{ and } \overrightarrow{AB} = \underline{b}\}$
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$

This is the Triangle law of vector addictive.