- (B) T is invertible
- (C) T is nilpotent*
- (D) none of these
- 6. Consider $T: \mathbb{R}^5 \to \mathbb{R}^5$ be a linear transformation such that $T(x_1, x_2, x_3, x_4, x_5) =$ $(x_1 - x_2, x_3 - x_4, 0, 0, 0)$. What is the dimension of the quotient vector space R^5 $\frac{1}{null T}?$
 - (A) 0
 - (B) 1
 - (C) 2^*
 - (D) 3
- 7. Let A be a nilpotent matrix of order $n \times n$ with complex $n \times n$ What is the
 - determinant of B = A I, where I is the identity at its of order nxn? (A) 1 (B) -1 (C) $P_{I-1}^{(C)} = P_{I-1}^{(C)} = P_{I-1}^{(C$ $(1) (-1)^{n*}$
- 8. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by TX = AX, where $A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 4 & 7 \\ -2 & 2 & 0 \end{bmatrix}$ and $X = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix}$. Then the range and kernel of T are given by
 - (A) a plane and line passing through the origin, respectively.*
 - (B) a line and plane passing through the origin, respectively.
 - (C) two lines passing through the origin.
 - (D) two planes passing through the origin.
- 9. A matrix $M_{n \times n}$, whose each element is 1. The correct statement(s) is/are (i) The minimum polynomial of M is $x^2 - nx$.
 - (ii) 0 is the eigenvalue value of M with algebraic multiplicity of n-1.
 - (ii) n is the eigenvalue value of M with algebraic multiplicity of n-1.

(A) only (i)

- (B) only (i) and (ii)*
- (C) only (i) and (iii)
- (D) All statements are correct.