		(D) circle
	12.	The solution of the equation $e^{2z} + e^{z+1} + e^z + e = 0$ is
		$(\mathrm{A}) \ \pi i$
		(B) $\pi i + 1$
		(C) $1 + 3\pi i$
		(D) all of the above
	13.	If z is a complex number, then $f(z) = \sin(z)$ is
		(A) bounded
		(B) unbounded
		(C) bounded at $z = 1 + i$
		(D) none of these
	14.	(B) unbounded (C) bounded at $z = 1 + i$ (D) none of these If z_1 and z_2 are complex number, the $\sqrt{z_2} + \overline{z_1}z_2 = 0$ implies (A) z_1 and z_2 are perpendicular (B) and z_2 are parallel 3000 (C) z_1 and z_2 are at angle $\frac{\pi}{3}$ (D) none of these
		(A) z_1 and z_2 are perpendicular z_1
		(B) And 2 are paralle 200
	1	(C) z_1 and z_2 are at angle $\frac{\pi}{3}$
		(D) none of these
	15.	The complex numbers $sinx + icos2x$ and $cosx - isin2x$ are conjugate to each other, for
		(A) $x = n\pi$
		(B) $x = 0$
		(C) $x = (2n+1)\frac{\pi}{2}$
		(D) none of these
	16.	If z_1 and z_2 are non-zero complex numbers, such that $ z_1 = z_2 $ and $Arg(z_1)+Arg(z_2)=2\pi$ then z_1 equals
		$(\mathrm{A}) \ \overline{z_2}$
		(B) $-\overline{z_2}$
		(C) z_2
		(D) $-z_2$
	17	If $ z = 1$ and $z \neq \pm 1$, then the value of $\frac{z}{1 - z^2}$ lies on
	±1.	$1-z^2$

(A) a line not passing through the origin