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This means that E is a completion of X if E is a Banach space which contains
a dense subset isometric to X.

Theorem 1.1.11 (Hausdorff)

Every normed linear space has a completion.

Definition 1.1.12

Let (X, || · ||
X

) and (Y, || · ||
Y

) be two arbitrary normed linear spaces. A map
f : X → Y is said to be continuous at a point a ∈ X if for every sequence
(xn)n of X converging to a with respect to || · ||

X
, the sequence

(
f(xn)

)
n
con-

verges to f(a) in Y with respect to || · ||
Y
. f is said to be continuous (on X)

if it is continuous at every point of X.
Equivalently, f is continuous if and only if the pre-image of every open set in
Y is an open set in X.

Recall that given two K-linear spaces X and Y , a map or operator

T : X −→ Y

is said to be linear if for all x1, x2 ∈ X and for all α1, α2 ∈ K we have

T (α1x1 + α2x2) = α1T (x1) + α2T (x2) .

Equivalently, T : X −→ Y is linear if for all x1, x2 ∈ X and for all α ∈ K,
we have

T (αx1 + x2) = αT (x1) + T (x2) .

Theorem 1.1.13

Let (X, || · ||
X

) and (Y, || · ||
Y

) be normed linear spaces. Then a linear map
T : X → Y is continuous if and only if T is a bounded linear map in the sense
that there exists a constant real number α ≥ 0 such that

||T (x)||
Y
≤ α ||x||

X
∀x ∈ X.

Notations 1.1.14
Let X and Y be two given arbitrary normed linear spaces.

The set of all bounded linear maps (i.e. continuous linear maps) from X into
Y is a linear space that will be denoted by B(X, Y ).

Given a bounded linear map T : X → Y , we shall set

||T ||B(X,Y )
= inf

{
k : ||T (x)||

Y
≤ k||x||

X
∀x ∈ X

}
that will be simply written as ||T || when there is no ambiguity.

4

Preview from Notesale.co.uk

Page 10 of 70



We denote by X∗ := B(X,K) the topological dual of X; that is, the set of all
continuous linear functionals of X.

Proposition 1.1.15

Let (X, || · ||
X

) be a nontrivial normed linear space and (Y, || · ||
Y

) be an
arbitrary normed linear space. Then for every T ∈ B(X, Y ), we have

||T (x)||
Y
≤ ||T || ||x||

X
∀x ∈ X ,

and

||T || = sup
||x||

X
≤1

||T (x)||
Y

= sup
||x||

X
=1

||T (x)||
Y

= sup
||x||

X
6=0

||T (x)||
Y

||x||
X

.

Theorem 1.1.16

Let (X, || · ||
X

) and (Y, || · ||
Y

) be normed linear spaces. Then

1.
(
B(X, Y ) , || · ||B(X,Y )

)
is a normed linear space.

2. If moreover (Y, || · ||
Y

) is a Banach space, then
(
B(X, Y ), || · ||B(X,Y )

)
is

a Banach space.

Corollary 1.1.17

The dual X∗ of any normed linear space X is (always) a Banach space.

Remark 1.1.18

Given a normed linear space (X, || · ||
X

), the dual X∗ being a normed linear
space (in fact a Banach space) has also a dual X∗∗ called the bidual of X.
Moreover there exists a canonical injection J : X ↪→ X∗∗ defined by

J : X −→ X∗∗

x 7−→ J(x) ,

where J(x) the continuous form on X∗ defined by

〈J(x), f〉 := 〈f, x〉 := f(x) ; ∀ f ∈ X∗ .

Definition 1.1.19 (Reflexive space)

A normed linear space (X, || · ||
X

) is reflexive if it is a Banach space such that
the canonical injection J : X ↪→ X∗∗ is surjective.
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where

Np(u) =


∫

Ω
|u|pdx)

1
p if 1 ≤ p <∞,

inf{M ≥ 0 : |u(x)| ≤M a.e. } if p =∞ .

(iv) Cc∞(Ω) denote the space of infinitely many times differentiable functions
u : Ω −→ R with compact support in Ω.
(v)

(a)

D(Ω) =
{
u ∈ C∞(Ω); supp(u) is compact and supp(u) ⊂ Ω

}
= Cc

∞(Ω)

is generally called the set of tests functions.
(b) D(Ω̄) is the space of all functions v such that v is the restriction on Ω

of a function of D(Rn).
(vi) The space of locally integrable functions is denoted by

L1
loc(Ω) =

⋂
K⊂⊂Ω

L1(K),

where K is a compact subset of Ω.
(vii)

(a)

Ck(Ω) =
{
u : Ω −→ R, u is k−times continuously differentiable

}
Ck(Ω̄) =

{
u ∈ Ck(Ω), Dα(u) is uniformly continuous for all |α| ≤ k.

}
.

C∞(Ω̄) =
∞⋂
k=0

Ck(Ω̄) .

Thus if u ∈ Ck(Ω̄) then Dαu continuously extends to Ω̄ for each multi-index
α, |α| ≤ k.

Definition 1.4.1 (Weak derivative)

Let u, v ∈ L1
loc(Ω) and α is a multi-index.

We say that v is the αth-weak derivative of u and write Dαu = v if∫
Ω

uDαφdx = (−1)|α|
∫

Ω

v φdx,

for all φ ∈ D(Ω).
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CHAPTER 2

Galerkin Method

2.1 Analysis of PDEs.

Partial Differential Equations (PDE’s) are fundamental in many areas of Math-
ematics such as Differential Geometry and Stochastic Processes. Nowadays
many natural human or biological, chemical, mechanical, economical or finan-
cial systems and processes can be described at a macroscopic level by a set of
PDEs governing averaged quantities such as density, temperature, concentra-
tion, velocity, etc.

As there is no general theory known for solving all PDE’s, and given the vari-
ety of phenomena modelled by such equations, research focuses on particular
PDE’s that are important for theory or applications. For example, for PDE’s
of order 2; elliptic equations are associated to a special state of a system in
principle corresponding to the minimum of the energy, parabolic problems de-
scribe evolutionary phenomena that lead to a steady state described by an
elliptic equation, hyperbolic equations modelled the transport of some physical
quantity such as fluids or waves.

Thus in our dissertation, we would like to present a constructive method for
solving Boundary Value Problems (i.e., PDE’s subjected to Boundary Condi-
tions) of variational type that have the variational formulation :

(P )

{
Find u ∈ H such that,
A(u, v) = L(v), ∀v ∈ H

where H is an infinite dimensional Hilbert space, L : H −→ R is a bounded
linear form and A : H ×H −→ R is coercive and continuous bilinear form.
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V . Then there exists a sequence (wn)n ⊂ W such that vn = Awn for every n.
Moreover for all m, n, we have

||wn − wm|| ≤
||A(wn − wm)||

α
=
||vn − vm)||

α

by the inequality (2.5) and the linearity of A. Therefore (wn)n is a Cauchy
sequence and so converges in the HilbertW to some element w. It follows from
the continuity of A that w = Av. This completes the proof of the closedness
of ImA.
Now let vo ∈ (ImA)⊥. Then 〈vo, v〉V = 0 for all v ∈ ImA which means also
that

〈vo, Aw〉V = 〈Aw, vo〉V = 0 , ∀w ∈ W.

And so
A(w, vo) = 0 , ∀w ∈ W .

Therefore vo = 0 according to (2.3).
Hence A is a continuous linear bijection with a continuous inverse (cf. the
inequality (2.5)).
Besides, by applying Riesz Representation Theorem to L ∈ V ∗, there exists
v̄ ∈ V such that

L(v) = 〈v, v̄〉V , ∀v ∈ V, and ||L||V ∗ = ||v̄||V .

By setting v̄ = B(L), it is clear that B defines a linear continuous and iso-
metric map from V ∗ onto V .

Therefore (P) is reduced to finding, for any given L ∈ V ∗, an element
u ∈ W such that

Au = B(L) . (2.6)

Thus we have a unique solution

u = A−1
(
B(L)

)
that satisfies moreover

||u||W ≤ ||Au||V
α

= ||B(L)||V
α

= ||L||V ∗
α

.

�

Let us now consider the particular case in which V = W in problem (P).
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Let us show that

Vh =
{
vh ∈ C([a, b]); vh|Ki ∈ P1, ∀i ∈ {1, . . . , N}

}⋂
V

is a finite dimensional subspace of V = H1
0 (a, b). It suffices to show that the

functions defined above constitute a basis for Vh. First of all, these functions
are continuous on each intervals Ki = [xi−1, xi] as polynomials, and piecewise
linear and they vanish on {a, b}, so φi ∈ Vh. Observe also that φi(xj) = δij.
Let {αi}N−1

i=1 ∈ R, such that f(x) =
∑N−1

i=1 αiφi(x) = 0, ∀x ∈ [a, b]. Therefore

f(x1) = α1 = 0, . . . , f(xN−1) = αN−1 = 0

Hence, {φi}N−1
i=1 are linearly independent. Furthermore, any vh ∈ Vh is uniquely

written (because a polynomial of degree 1 on an interval [c, d] is uniquely
determined by its values on c and d) by vh =

∑N−1
i=1 βiφi. This implies that

vh(x1) = β1, . . . , vh(xN−1) = βN−1 .

This identity shows that {φi}N−1
i=1 is a basis for Vh. Therefore

Vh = span
{
φi , 1 ≤ i ≤ N − 1

}
=⇒ dimVh = N − 1

Note that the support of φi is

suppφi = [xi−1, xi+1] , i ∈ [1, N − 1].

(b) Consider a two dimensional polygonal domain, covered with finite element
meshes τh such that each element Ke ∈ τh is a triangle. So let Ke be a triangle
with vertices (xi, yi),(xj, yj) and (xk, yk) taken in the anti-clockwise direction.
We write a linear approximation inside each element of the form

u(Ke)(x, y) = a1 + a2x+ a3y (?)

with ai ∈ R. At the nodes we get
u(Ke)(xi, yi) = ui = a1 + a2xi + a3yi,
u(Ke)(xj, yj) = uj = a1 + a2xj + a3yj,
u(Ke)(xk, yk) = uk = a1 + a2xk + a3yk.
For the solution of a1, a2, a3 we have the following system 1 xi yi

1 xj yj
1 xk yk

 a1

a2

a3

 =

 ui
uj
uk

 ,

using Cramer’s rule, the solution of the system is obtained as

a1 =
∆1

∆
, a2 =

∆2

∆
, a3 =

∆3

∆
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Theorem 3.3.10

Let τh be a regular triangulation of Ω containing only triangles if n = 2 or
tetrahedrals if n = 3. Let us denote by

Nh =
{
ci : i = 1, ..., Nh

}
the set of nodals in the mesh satisfying hypothesis (H0), (H1), (H2).
Then there exists a basis system φi ∀i = 1, ..., Nh defined by{

φi|K ∈ Pm, ∀ϕ ∈ τh,
φi(cj) = δij, ∀j = 1, ..., Nh,

called shape functions such that for all vh ∈ V m
h ,

vh =

Nh∑
i=1

v(ci)φi

How to construct shape functions?

It is appropriate to use reference element technique. It is particularly suitable
for higher dimensional problems. When n = 1, it consists of computing a shape
funtion on, a suitably choosen reference element say Ka. For each element Ki

in the mesh we define then an affine reference map FKi : Ka −→ Ki and use
it to transfer the shape functions from Ka to Ki. In this way one obtains the
desired finite element basis in the physical mesh τh.

Example 3.3.11

Suppose that the triangulation τh contains only triangles. Let us choose as
reference element the triangle Tr with vertices t1 = (0, 0), t2 = (1, 0), t3 =
(0, 1). Shape functions φi,r i = 1, 2, 3, are given by the following barycentric
coordinates functions λi i = 1, 2, 3

φ1,r(x, y) = 1− x− y = λ1(x, y),
φ2,r(x, y) = x = λ2(x, y),
φ3,r(x, y) = y = λ3(x, y),

for all (x, y) ∈ Tr.

Proof : From theorem 3.3.12 we have seen that for all αi ∈ R i = 1, 2, 3,
there exists a unique p ∈ P1 such that p(ti) = αi, i = 1, 2, 3 with p(x, y) =
α1λ1(x, y)+α2λ2(x, y)+α3λ3(x, y) ∀x, y ∈ Tr. On the other hand by assuming
p(x, y) = a + by + cx, a, b, c ∈ R, ∀x, y ∈ Tr we obtain a unique solution
c = α2−α1, b = α3−α1, and a = α1 from p(ti) = αi. So p(x, y) = (α2−α1)x+
(α3 − α1)y + α1 = (1− x− y)α1 + xα2 + yα3. Thus for (α1, α2, α3) = (1, 0, 0),
(0, 1, 0), and (0, 0, 1) we have respectively by unicity of p
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p1(x, y) = 1− x− y = λ1(x, y)
p2(x, y) = x = λ2(x, y)
p3(x, y) = y = λ3(x, y) .

∀x, y ∈ Tr. Which constitute a basis on Tr from Theorem 3.3.4 called shape
functions.

The transfer affine map which transfer Tr to a given triangle T ∈ τh, with
vertices (t1 = (x1, y1), t2 = (x2, y2), t3 = (x3, y3)), is then defined by,

F : Tr −→ T

(s, t) 7−→ (x, y) = F (s, t) =

(
(x2 − x1)s+ (x3 − x1)t+ x1

(y2 − y1)s+ (y3 − y1)t+ y1

)
.

where F is fixed such that F (0, 0) = t1, F (1, 0) = t2, F (0, 1) = t3,

In general, the stiffness matrix and the load vector are not easy to compute
exactly. In such cases one use numerical quadrature methods. Among the wide
scale of existing numerical quadrature methods, the Gaussian quadrature rules
are of high efficiency.

3.4 Gaussian Quadrature Rules

One dimensional case

Definition 3.4.1

The (m+1)-point Gaussian quadrature rule in the interval Ka = (−1, 1) has
the form ∫ 1

−1

g(ξ)dξ ≈
m∑
i=0

wm+1,ig(ξm+1,i),

where g is a real bounded continuous function on [−1, 1], ξm+1,i ∈ (−1, 1),
i = 0, ...,m, are the integration points, and wm+1,i ∈ R are the integration
weights which satisfies

m∑
i=0

wm+1,i = 2.

Definition 3.4.2 (Legendre polynomial):

Let the integer m ≥ 0. Polynomials of the form

Lm(x) = 1
2mm!

dm

dxm
(x2 − 1)m,
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. Then ∫ 1

−1

p(x)dx =
m∑
i=0

p(xm+1,i)wm+1,i ∀p ∈ P2m(−1, 1) .

In order to have the Gauss-Radau formula to include the point x = 1, the
variable a is taken in such a way that q(1) = 0 and a similar result as the
previously presented is valid.

Gauss-Lobatto-Legendre quadrature formula:

Finally, the Gauss-Lobatto-Legendre quadrature formula is obtained by con-
sidering

q(x) = Lm+1(x) + aLm(x) + bLm−1, (c)

where a and b are chosen such that q(−1) = q(1) = 0.
Let x0 < x1 < ... < xm be the roots of (c) and let w0, ..., wm be the solution

of the linear system

m∑
i=0

xjiwi =

∫ 1

−1

xjdx, 0 ≤ j ≤ m

Then ∫ 1

−1

p(x)dx =
m∑
i=0

p(xm+1,i)wm+1,i ∀p ∈ P2m−1(−1, 1).

Remark 3.4.4

The integration points and the integration weight exist and they are unique
since they are roots of the Legendre polynomial. Furthermore we have the
relation

wm+1,i = 2
(1−ξ2m+1,i)L

′
m+1(ξ)2

, i = 0, ...m.

Quadrature in arbitrary intervals

Let K = (xi−1, xi) ⊂ R be an arbitrary interval. To transfer data from Ka to
K we use an affine map FK : Ka −→ K, such that

FK(ξ) = c1 + c2ξ, for some c1, c2 ∈ R,
FK(−1) = xi−1,
FK(1) = xi.

Therefore, the new integration points ξ̃m+1,i ∈ K are then defined as

ξ̃m+1,i = FK(ξm+1,i), i = 0, ...,m.
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Thus, K is the following matrix :
h0
3

+ 1
h0

h0
6
− 1

h0
0 0 . . . 0

h0
6
− 1

h0

h0+h1
3

+ 1
h0

+ 1
h1

−h1
3
− 1

h1
0 . . .

.

.

.

0
−h1

3
− 1

h1

h1+h2
3

+ 1
h1

+ 1
h2

−h2
3
− 1

h2
0

0 0
−h2

3
− 1

h2

h2+h3
3

+ 1
h2

+ 1
h3

−h3
3
− 1

h3
0

0 · · · 0
−hN−1

3
− 1

hN−1

hN−1+hN
3

+ 1
hN−1

+ 1
hN

−hN
3
− 1

hN

0 · · · 0 0 −hN
3
− 1

hN

hN+1
3

+ 1
hN+1


Which is a tridiagonal matrix, and it is obviously sparse.
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