
Method	Description	Use in aseptic technique
Chemical agents	Disinfectants are	Clean bench before and after working
C C	chemicals that stop, or	with the organisms.
	slow, the growth of	Dispose of wet equipment
	bacteria. They are	immediately, treat any spillages that
	ineffective against	occur.
	bacterial spores,	
	though.	
Heat treatment	Naked flame- hold an	An inoculating loop is flamed by
	object in or pass an	holding it in the hottest part of a
	object through a	Bunsen flame until it glows red.
	Bunsen flame. No	Needles and forceps can also be
	microorganism can	flamed during the manipulation of
	survive this exposure.	cultures. Flame sterilisation is often
		used on glass rods and glass
		spreaders after they have been
		dipped in 70% alcohol.
		The neck of a glass bottle, flask or
		tube containing a culture of
		microorganisms is sterilised by
		passing it through a Bunsen flame
		without allowing it to become red-
		hot.
	Dry heat- Place an	A routine method for the sterilisation
	object in a hot-air oven	of labora dorglassware prior to its
Preview	at 160 degrees for at	0,50
	least one hour	
	Mois lie t-Place	This is in preferred method for many
	objects in an auto lav	items of laboratory equipment and
-view	at 121 degrees for at	for culture media that are not heat-
previ	le st 5 minutes.	sensitive. It is also used to sterilise old
		cultures and spent media before
		disposing of them.
Filtration	Pass a liquid culture	The size of the pores involved makes
	through a filtration	this unsuitable for all but the smallest
	device that has itself	volumes of liquid.
	been sterilised by dry	
	heat. Using a filter of	
	pore size 0.2	
	micrometres will	
	remove bacteria but	
	not viruses.	
Radiation	Expose items to UV or	UV radiation with a wavelength less
	ionising radiation.	than 330nm is most effective but, as
		this can damage the retina, is not
		used in college or school laboratories.
		Ionising radiation such as gamma
		rays, cannot be used in a college or
		laboratory since industrial facilities
		-
		are needed. Many sterile plastic items
		are supplied in packages that have

Measure	explanation	Problems that may be encountered.
Restrict addition of antibiotics to animal feeds.	Animal feeds account for about half of all antibiotic sales. Used at sub-clinical concentrations they do not destroy bacteria but favour those that develop resistance.	The agricultural industry forms a strong lobby group and would resist any restriction on practices that increase the profitability of farming or the quality of their products.
Doctors to restrict prescriptions of antibiotics.	If family doctors stop prescribing antibiotics as a precautionary measure and prescribe them only when they are needed, the selective pressure favouring resistant bacteria will lessen.	This might mean that doctors advise patients to go home to bed for a few days until their own immune systems overcome the infection. Many patients are unwilling to take this advice and pressure doctors.
Patients must complete their full course of antibiotics.	Many patients begin to feel better as their own immune system overcomes the infection, so stop taking the antibiotic. This creates the selection pressure without destroying the bacteria.	We rely on people acting in the best interests of the community at large. In general, we do whatever we feel like doing.
Create new antibiotics.	Make new antibiotics faster that bacteria can become minune to then	The development takes years and the success rate is very low, not only making it a slow process but a very expensive one.
Stem runt fungus:	Page	

This parasite infects the plants stem, producing a covering that is the colour of rust. Like most fungi, the stem rust fungus produces dormant spores, which are carried in the air to new plants. On landing on a new plant, the spores germinate and produce threadlike structures called hyphae. A mass of this is called a mycelium. Like all fungi, it secretes digestive enzymes from its hyphae onto the material on which it is growing. The enzymes digest chemicals in the stem and the fungus absorbs the products of this digestion. Infection by stem rust fungus:

- Weakens the stem, often causing the plant to fall over, making mechanical harvest impossible.
- Uses nutrients that would otherwise be stored in the plant's seeds, reducing the harvest.
- Breaks the outer epidermis o the stem, increasing the rate of water loss and making the stem more susceptible to infection by other plant pathogens.

6. Stimulated by cytokine secretion from the Thelper, the activated B-cell divides rapidly by mitosis, forming a clone of cells called plasma cells, which are packed with RER. The antibody is massproduced here and exported from the plasma cell by exocytosis. It is produced in such numbers that the antigen is overcome. The production of an activated B-cell, its rapid division, and the production of antibodies, is called clonal selection.

7. After these antibodies have destroyed the foreign matter, the antibodies disappear from the blood and tissue fluid, along with the bulk of the specific B and T cells that correspond. However, some of these activated cells are retained as memory cells, which are long-lived, and in the event of re-infection by the same antigen, these memory cells make an early and effective response possible.

The Cell-mediated Immune Response:

This response is brought about by T-cell activity. T-cells will bind to an antigen-presenting cell that has antigens from a pathogen on its surface. In doing so, the activated T-helper cell is formed that releases cytokines. The release of cytokines stimulates the activated T-helper cell to divide repeatedly to form a clone. Within this clone are three types of T cell:

- T-helper cells: Release cytokines that stimulate production of the stress.
 Memory cells: Remain in the body and bring abuselos.

Immunity and Vaccination:

Immunity and Vaccination: There are multiple type of mmunity, acquired in different ways.					
	ARTIFICIAL IMMUNITY	NATURAL IMMUNITY	LONGEVITY OF IMMUNITY		
ACTIVE IMMUNITY (ANTIBODIES MADE BY SUBJECT)	Antibodies made following administration of a vaccine. B cells, T cells, and memory cells are made.	Production of antibodies following infection by, and recovery from, a disease. B, T, and memory cells are made.	Long-lasting since memory cells are maintained throughout life.		
PASSIVE IMMUNITY (ANTIBODIES MADE BY ANOTHER ORGANISM)	Antibodies administered by injection (immunisation).	Mother's antibodies cross placenta to foetus or ingested by baby in mothers' milk.	Fades with time, since the recipient has not made memory cells and the antibodies received are themselves treated as non- self-antigens and destroyed by the recipient's active immunity.		

Vaccination is the deliberate administration of antigenic material to stimulate the recipient to develop active immunity against a pathogen. The active agent can be,