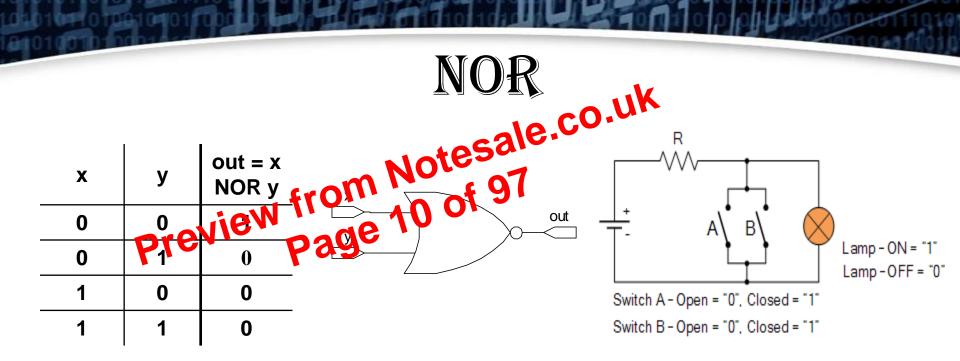
Binary variables take the of two values.

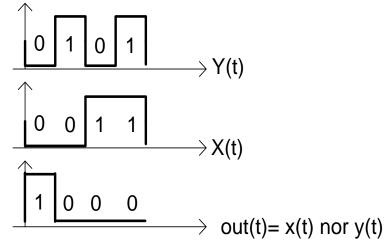
- Logical appendiors operate on binary values and binary vanables
- Basic logical operators are the logic functions AND, OR and NOT.
- Logic gates implement logic functions.

LOGICAL OPERATIONS The three basic logical operations are: AND Preview from 5 of 9 Page 5

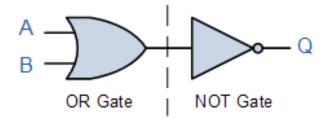
- NOT AND is denoted by a dot ().
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (-), a single quote mark (')ulletafter, or (~) before the variable.





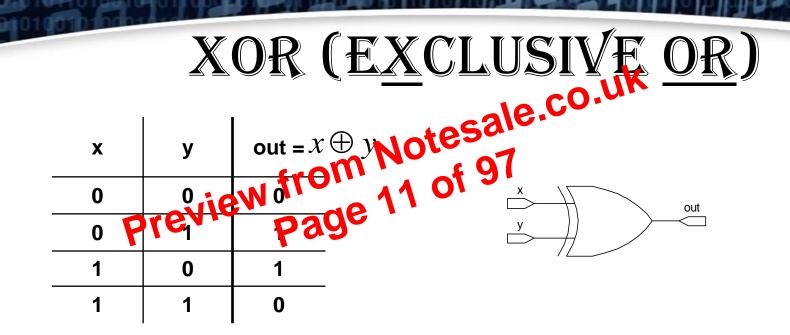


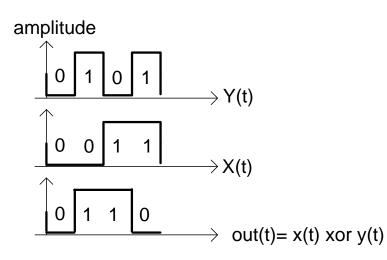
• Output value is the complemented output from an "OR" function.



T 10 10 1

10





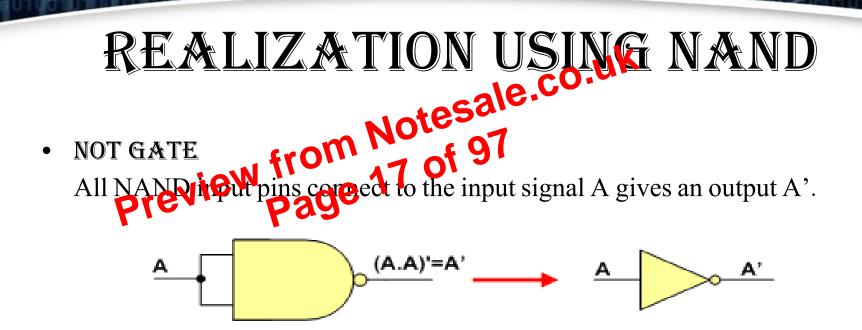
- The number of inputs that are 1 matter.
- •More than two values can be "xor-ed" together.

•General rule: the output is equal to 1 if an odd number of input values are 1 and 0 if an even number of input values are 1.

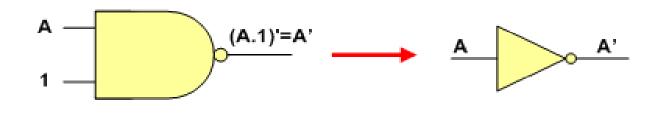
- Used to evaluate any logistranction
 Consider F(Y, Y, Z) = XAYOFYZ

X	Y	Ζ	XY	\overline{Y}	$\overline{Y}Z$	$F = X Y + \overline{Y} Z$
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

10.00

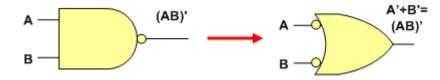


One NAND input pin is connected to the input signal A while all other input pins are connected to logic 1. The output will be A'.

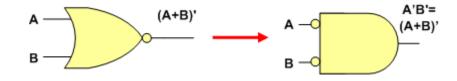


DEMORGAN'S THEOREMS DeMorgan's theorems provide mathematical vertification of a ge

the equivalency of the NAND and negative-OR gates

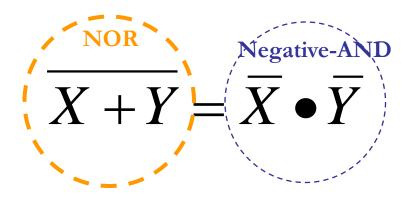


- the equivalency of the NOR and negative-AND gates.



DEMORGAN'S THEOREMS The complement of two or of 97 more ANNed variables 29 equivalent to the OR of the complements of the individual variables. **NAND** $X \bullet Y = X + \overline{Y}$

• The complement of two or more ORed variables is equivalent to the AND of the complements of the individual variables.



BOOLEAN OPERATOR PRECEDENCE The order of evaluations is: 1. Previouthesese 35 of 97

- - 2. NOT
 - AND 3.
 - OR 4.
- **Consequence:** Parentheses appear around OR expressions
- Example: $F = A(B + C)(C + \overline{D})$

EXPRESSION SIMPLIFICATION An application of Boolean algebra Simplify to contain the smallest number of <u>literals</u>

- (Vaffables that hay or may not be complemented)

$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$

- $= AB + ABCD + \overline{A}CD + \overline{A}C\overline{D} + \overline{A}BD$
- $= AB + AB(CD) + AC(D + \overline{D}) + \overline{A}BD$
- $= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$
- = B (A + D) + A C (has only 5 literals)

fppt.con

- A Simplification Example:
 - $F(A,B,C) = \sum_{i=1}^{1} (1,4,5;6,7)^{i}$
- Writing the minterm expression $F = \overline{A} \overline{B} \overline{C} + ABC + ABC + ABC + ABC$ • Simplifying: Page 60B et + ABC + ABC
 - $F = \overline{A} \overline{B} C + A (\overline{B} \overline{C} + \overline{B} C + B \overline{C} + B C)$
 - $F = \overline{A} \overline{B} C + A (\overline{B} (\overline{C} + C) + B (\overline{C} + C))$

60

- $F = \overline{A} \overline{B} C + A (\overline{B} + B)$
- F = A B C + A
- F = BC + A
- Simplified F contains 3 literals

FOUR-VARIABLE KAMAPS We can do four-variable expressions and the second state of the s

- - The minterms in that hird and fourth columns, and in the third and fourth witched around.

Again, this ensures that adjacent squares have common literals.

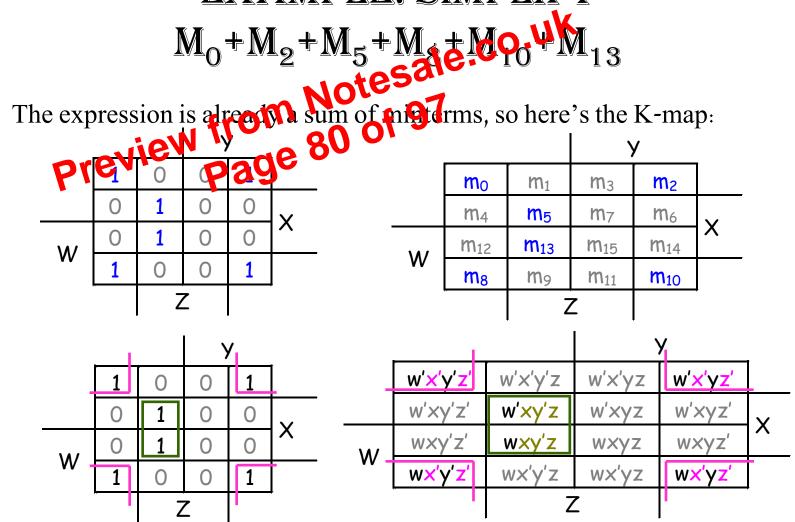
			```	_					У			
	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'		_		m _o	m ₁	m ₃	m ₂	
	w'xy'z'	w'xy'z	w'xyz	w'xyz'				$m_4$	$m_5$	<b>m</b> 7	$m_6$	
W	wxy'z'	wxy'z	wxyz	wxyz'		- N	\	<b>m</b> ₁₂	<b>m</b> 13	<b>m</b> 15	m ₁₄	
	wx'y'z'	wx'y'z	wx'yz	wx'yz'			vv	<b>m</b> 8	<b>m</b> 9	<b>m</b> ₁₁	<b>m</b> 10	
		Z							Z	2		

- Grouping minterms is similar to the three-variable case, but:
  - You can have rectangular groups of 1, 2, 4, 8 or 16 minterms.
  - You can wrap around *all four* sides.

fppt.con

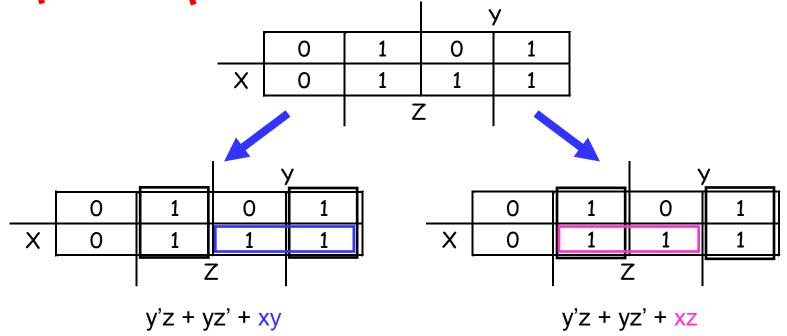
### EX&MPLE: SIMPLIF

٠

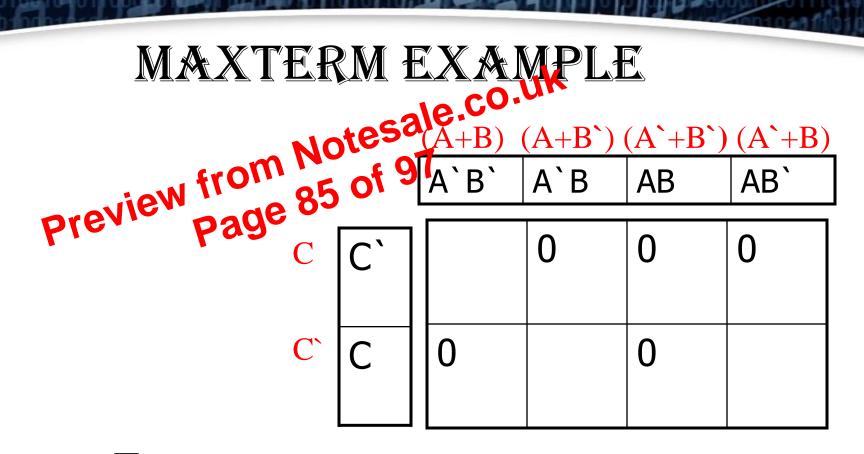


We can make the following groups, resulting in the MSP x'z' + xy'z.

**K-MAPS CAN BE TRICKY:** • There may not necessarlote a *unique* MSP. The K-map below yields two valid and equivatent MSPs, because there are two possible ways to actude minterm m₇.



Remember that overlapping groups is possible, as shown above.



 $f(A,B,C) = \prod M(1,2,4,6,7)$ 

=(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)

Note that the complements are (0,3,5) which are the minterms of the previous example

