INTRODUCTION

- STRODUCTION Notesale.co.uk Notesale.co.uk from 2 of 36 Design problem normally starts with a word description of input output relation and ends with a circuit diagram having sequential and combinatorial logic elements.
- Sequential logic circuit design refers to synchronous clock-triggered circuit because of its design and implementation advantages.
- Design a digital circuit whose outputs are to take on specific values after a specific sequence of inputs has taken place.

STATE MACHINE DESIGN

	E MACHINE DESIGN	e.co.uk			
	preview from 10 of 30	MEALY MODEL			
	The output depends only on present state and not on input	The output is derived from present state as well as input			
	It requires more number of states and thereby more hardware to solve any problem	It requires less number of states and thereby less hardware to solve any problem			
	The output is generated one clock cycle after.	The output is generated one clock cycle earlier, so faster			
	The output remains stable over entire clock period and changes only when there occurs a state change at clock trigger based on input available at that time.	The glitches occurs			

SEQUENCE RECOGNIZER Step: 5 Build the circuit from Aotesale.co.uk For Output Z K-map Q1 Q K-map χ'. С Qķ Q1Q0 χ. Z X 00 01 11 10 0 0 0 0 \mathbf{O} Q0 χ-D0 Q D ()1 0 ()Q1-1 Q0'-С Qþ $Z = XQ_1Q_0$

$$D_1 = Q_1 Q_0' X' + Q_1' Q_0 X'$$

 $D_0 = X + Q_1 Q_0'$

SEQUENCE RECOGNIZER

SEQUENCE KE		tesale.	co.uk							
Step: 2 Assigning binary todes to State										
prev. pa	Fresent	Next		Output						
		X=0	X=1	X=0	X=1					
	А	В	А	0	0					
	В	В	С	0	0					
	С	В	А	1	0					

Next State Table

Put A=00 **B**=01 **C**=10

Preser	nt	Next				
		X=0		X=1		
Q 1	Q 0	Q 1	Q 0	Q 1	Q ₀	
0	0	0	1	0	0	
0	1	0	1	1	0	
1	0	0	1	0	0	

SEQUENCE RECOGNIZER Notesale.co.uk

X=1

То

0

1

0

QN₀

0

0

0

QP₀

0

1

0

Step: 4 Find equation for the FF2500s and output

X=0

To

1

0

1

QN₀

1

1

1

K-map for T_0

QP₀

0

1

0

 $T_0 = X'Q_0' + XQ_0$

SEQUENCE RECOGNIZER Notesale.co.uk

X=1

То

1

0

1

QN₀

1

1

1

QP₀

0

1

0

Step: 4 Find equation for the FF3 puts and output

QP₀

0

1

0

X=0

To

0

1

0

QN₀

0

0

0

K-map for T_0

 $T_0 = X'Q_0 + XQ'_0$