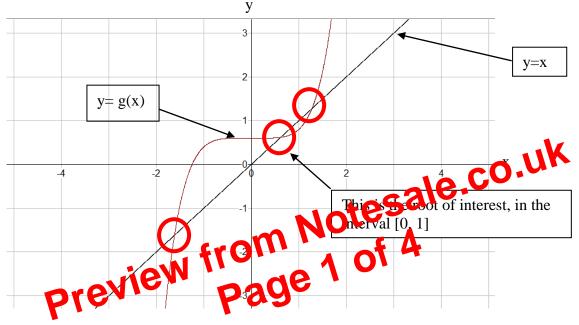
Rearrangement Method


Method and Example

This method will find an **interval** in which the root lies.

The first intention is to find a root of the equation: $f(x) = x^5-5x+3=0$

This can be rearranged into the form x=g(x), where $g(x) = \underline{x^5+3}$

When put on a graph with y=x, the two graphs should intersect. Below are the roots of the equation f(x) = 0.

This gives the iterative formula: $x_{n+1} = x_n^5 + 3$. When $X_0 = 0$, the iterative formula produces the following values: 5

X 0	0
X 1	0.6
X 2	0.61555
X 3	0.61767
X 4	0.61798
X 5	0.61803

The function g(x) converges on the graph y=x at 0.61803, this is a root of the equation $x^5-5x+3=0$.