11	Translation	Gyanylyltransferase		Hydrolyzes GMP from GTP to attach GMP to the 5' end of tRNA
11	Translation	Methyltransferase		methyl to nitrogen position at the eventh carbon in a guanine base
13	Translation	RNA Polymerase III	•	• Transcribes tRNA as pre- tRNAs
		Aminoacyl-tRNA Synthetase	•	• 20 of them, one for each amino acid, adds correct one
		·		D.UK

Processes jew from Notesale.co.un					
C h	PINCESS	r rocarje tes	Eukaryotes		
10	Compaction	 Formation of chromosomal loops In the form of: Loop domains - Proteins Radial loops - Condensins Negative and positive supercoils can form 	 Interphase compaction methods: Histone octamer attaches to the negatively charged backbone of DNA Using negative supercoils DNA is arranged in 30 nm fibers Solenoid or Zigzag molecule Forms radial loops bound to a nuclear matrix filament MARs bind to specific proteins in the nuclear matrix and form chromosomal loops Metaphase compaction: Protein filaments come closer together to form a more compact scaffold to anchor radial loops 		

			 After S phase and until the middle of prophase sister chromatids are attached along their length Cohesins on the arms are released during prophase At anaphase cohesins are
			completely released
11	DNA Replication	 E Coli Starts at oriC 3 things found @ AT-rich sequence DnaA box sequence DnaA box sequence Promotor sequence GATC methylation sites DnaA proteins bind to the DnaA box Causing DnaC proteinstrothind Cause hell case to bind Gauses strand separation DNA gyrasenave Gin fibre calls relicase to relieve supercoils caused by unwinding Single-strand binding proteins keep the parental strand apart Primase bonds to helicase and synthesizes RNA primers Forming a primosome DNA polymerase III binds to the complex and starts synthesizing the strands Forming a replisome DNA polymerase I removes the RNA primers and replaces them w DNA Ligase catalyzes a covalent bond btwn adiagent Olyazeli 	 Yeast ARS sequences function as start Rich in AT PreRC is assembled on the ARS ORC First initiator of replication MCM helicase Completes DNA licensing Forms the two replication or Ks Forms the two replication or Ks DNA epsilon and delta bind and synthesize their respective strands Polymerase alpha/primase dissolves so that they can bind Flap endonuclease removes the overhang caused by DNA polymerase delta Ligase seals the gaps Telomerase Extends the OG sequence of the telomere so that the primer can attach to the new strand and synthesize a bit of the new telomere
		fragments	