
PLANE GEOMETRY

Plane geometry is all about shapes, like lines, circles and triangles that are drawn on same flat surface called plane. TRIANGLE

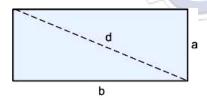
When base, b and height, h is given:

$$A_{T} = \frac{1}{2}bh$$

When two sides, a and b and an included angle θ is given:

$$A_{T} = \frac{1}{2}ab (\sin \theta)$$

When three sides, a, b and c is given: Hero's Formula:


$$A_T = \sqrt{s(s-a)(s-b)(s-c)}$$

$$s = \frac{a+b+c}{2}$$

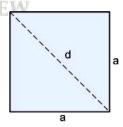
When angles A, B and C and one side, a is given:

$$A_{T} = \frac{a^{2}(\sin B)(\sin C)}{2\sin A}$$

RECTANGLE

Area:

$$A = ab$$


Perimeter:

$$P=2(a+b)$$

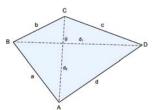
Diagonal:

$$d = \sqrt{a^2 + b^2}$$

SQUARE

Area:

$$A = a^2$$


Perimeter:

$$P = 4a$$

Diagonal:

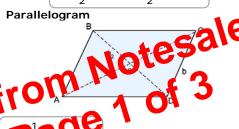
$$d = a\sqrt{2}$$

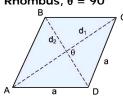
GENERAL QUADRILATERAL

When diagonal, d₁ and d₂ and included angle, θ are given:

When four sides, a, b, c and d and included angle, $\,\theta\,$ are given:

$$A = \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd \cos^2 \theta}$$


$$s = \frac{a+b+c+d}{2}$$


Where:

$$\theta = \frac{1}{2}$$
 (sum of two opposite angles)

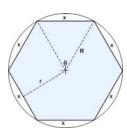
When four sides, a, b, c and d and two opposite angles A and C are

Rhombus, $\theta = 90^{\circ}$

$-d_1d_2$

Equilateral polygons are polygons with equal sides Equiangular polygons are polygons

with equal interior angles Regular polygons are polygons that are both equilateral and equiangular.


Cyclic Quadrilateral

Radius of circumscribed circle:

$$r = \frac{\sqrt{(ab + cd)(ac + bd)(ad + bc)}}{4A}$$

REGULAR POLYGONS

Exterior angle:

$$A = \frac{1}{2}R^2 (\sin \theta) n = \frac{1}{2}xr n$$

Perimeter:

$$P = (x)(n)$$

Interior angles =