- Representative Elements
 - Atoms lose or gain valence electrons to gain a noble gas electron configuration.

• O: 1s2 2s2 2p4

O²⁻: 1s2 2s2 2p6

Al: [Ne] 3s2 2p1

Al³⁺: [Ne]

Al3+ and N3- are isoelectric with Ne.

- Isoelectric same number of electrons
- Transition Metals:
 - Form cation by removing electrons first "s" then "d" electrons

■ Fe: [Ar] 4s2 3d6

Lecture 3.36.17

- Same group → same # and type of valence electrons.
- Periodic law if arrange elements by Z, their chemical and physical properties vary periodically.
- Electrons are both attracted to the nucleus and repelled by other electrons.
 - \circ Effective nuclear charge (Z_{eff}) "positive charge" felt by an electron.
 - $Z_{\text{eff}} \cong Z \text{ (#pt)}$ # of inner core e-

•
$$Z_{eff} = Z - \sigma$$

- o Effective nuclear charge increases as you go upper right diagonally on the periodic table.
- Atomic radius (atomic size) one-half the distance between the 2 nuclei in 2 adjacent atoms.

- Exactly the opposite of effective nuclear charge, and it increases as you go lower left diagonally.
- \circ Larger $Z_{\text{eff}} \rightarrow$ stronger hold of nucleus on e- \rightarrow smaller the atomic radius
- ↓ across a period
 - ↑# of protons but small shell of e-
- Put in order of decreasing atomic radius
 - o P, Si, N
 - Si > P > N
 - o C, Li, Be
 - Li > Be > C
- Ionic Radius
 - Size of an ion.
 - Cation (+) is smaller than the corresponding atom from which it came
 - Often loses its outer shell
 - Nuclear charge remains the same but fewer electrons (atom shrinks)

Anon () is larger than (t) Corresponding atom from which it came.

- Nuclear charge remains the same but more e- (weaker so expands)
- o Summary: cation < atom < anion
- Comparing lons to each other
 - lons in the same group (family)
 - Increases down a group (if same charge)
 - Size of shell increases as you go down a group.
 - Isoelectronic ions

	Z (#pt)	#e-	
S ²⁻	16	18	
Cl ⁻	17	18	

- Ionization energy and metallic character
 - Metallic character based is IE
 - o More metallic character, more the element exhibits physical and chemical properties of metals.
 - Reactive metal → loses e- to form cation
 - Lowest IE → more metallic character
- Practice Ionization Energy
 - Which has the larger 1st IE?
 - K, Ca: Ca
 - I, F : **F**
 - Which has the larger 2nd IE?
 - Li, Be : Li (its harder to destroy a noble gas as Li is already at Li⁺ from the 1st IE $I_2 + X^+_{(g)} \to X^{2+}_{(g)} + e^-$ C.O.2

 Order the elements from smallest 2nd Godgest

 Na, Mg, Al

 Nal: [Ne]

- Mg < Al < Na</p>
- Electron affinity (EA) how strongly an atom gains electrons
 - Energy change that occurs when an e- is added to a gaseous atom
 - \blacksquare $\triangle H = EA = -energy$
 - EA increases as you go upper right diagonally.
 - Low EA = hard to gain e-
 - High EA = easy to gain e-
- Electronegativity (EN) the ability to attract electrons in a covalent bond
 - Closer to Fluorine, more EN.
 - EN increases as you go upper right diagonally

o FONCI BrICS PH

Most EN Less En

o Noble gases aren't included: they are stable with REALLY high IE, low EA

Preview from Notesale.co.uk
Preview from 10 of 31
Page 10 of 31

			planar	Planar	II C H⊅ NH	
	3	1	Trigonal planar	Bent	 S O⁄⁄ ^O □<120	<120
	4	0	Tetrahedral	Tetrahedral	H — C	109.5
	4	1	Tetrahedral	Trigonal Pyramidal	: - C - H	<109.5
	4	2 fro	Tetrahedra 20	tesal of 31	 O H⊅ ^H □<109.5	<109.5
1		Pa	Frigonal bipyramidal	Trigonal bipyramidal	CI CI № P — CI CI [⊅] CI	90 Between Axial and equatorial 120 Equatorial
	5	1	Trigonal bipyramidal	seesaw	□<90 F F	<90 <120
	5	2	Trigonal bipyramidal	T-shaped	F □<90 	<90