$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

Parallel Vectors

 \overrightarrow{AB} is parallel to \overrightarrow{PQ} if $\frac{AB}{\overrightarrow{PQ}} = k$, where k is a constant. If $\frac{AB}{BC} = k$, since B is a common point, A, B

and C are collinear.

Vector on Cartesian Plane

$$\left|\overrightarrow{OA}\right| = \sqrt{x^2 + y^2}$$
 = magnitude of vector OA

0

Given $\overrightarrow{OA} = x$ and $\overrightarrow{OB} = y$. P is a point on AB

such that AP : PB = 1 : 2 and Q is the midpoint

of OB. The line OP intersects AQ at the point E. Given $\overrightarrow{OE} = \mathbf{k} \overrightarrow{OP}$ and $\overrightarrow{AE} = h \overrightarrow{AQ}$, where h

(a) find \overrightarrow{OQ} and \overrightarrow{OP} in terms of x and/or

В

Unit vector in the direction of

$$\overrightarrow{OA} = \frac{x_{\underline{l}} + y_{\underline{j}}}{\sqrt{x^2 + y^2}}$$

Example :

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = \underbrace{x} + \frac{1}{3} \overrightarrow{AB}$$

$$= \underbrace{x} + \frac{1}{3} (\underbrace{y} - \underbrace{x}) = \frac{1}{3} (2\underbrace{x} + \underbrace{y})$$
(b) (i) $\overrightarrow{OE} = \operatorname{k} \overrightarrow{OP} = \operatorname{k} \times \frac{1}{3} (2\underbrace{x} + \underbrace{y})$

$$= \frac{2k}{3} \underbrace{x} + \frac{k}{3} \underbrace{y}$$
(ii) $\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE} = \overrightarrow{OA} + \operatorname{h} \overrightarrow{AQ}$

$$= \underbrace{x} + h(-\underbrace{x} + \frac{1}{2} \underbrace{y})$$

$$= (1 - \operatorname{h}) \underbrace{x} + \frac{h}{2} \underbrace{y}$$
(c) Compare the coefficient of x and y

nitude of vector
on of
Page P
P

$$1 - h = \frac{2k}{3} - \dots - (1)$$
and $\frac{h}{2} = \frac{k}{3}$, $h = \frac{2k}{3} - \dots - (2)$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (1)$$
and $\frac{h}{2} = \frac{k}{3}$, $h = \frac{2k}{3} - \dots - (2)$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (1)$$
and $\frac{h}{2} = \frac{k}{3}$, $h = \frac{2k}{3} - \dots - (2)$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (1)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (1)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (1)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substitute in (1)

$$1 - h = \frac{2k}{3} - \dots - (2)$$
Substi

Example :

Given
$$\overrightarrow{OP} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
 and $\overrightarrow{OQ} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

- Find *OP* (a)
- Find the unit vector in the direction of (b) \overrightarrow{OP} .
- (c) Given $\overrightarrow{OP} = m \overrightarrow{OA} n \overrightarrow{OQ}$ and A is the point (-2, 7). Find the value of m and n.

(a)
$$\left| \overrightarrow{OP} \right| = \sqrt{3^2 + (-4)^2} = \sqrt{25} = 5$$

(b) Unit vector in the direction of \overrightarrow{OP} = $\frac{3i-4j}{5}$

(c)
$$\overrightarrow{OP} = m \overrightarrow{OA} - n \overrightarrow{OQ}$$

 $\begin{pmatrix} 3 \\ -4 \end{pmatrix} = m \begin{pmatrix} -2 \\ 7 \end{pmatrix} - n \begin{pmatrix} 1 \\ 5 \end{pmatrix}$

(a)
$$\overrightarrow{OQ} = \frac{1}{2}\overrightarrow{OB} = \frac{1}{2}\overrightarrow{y}$$

(b) Express OE in terms of (i) k, x and y,

(ii) h, x and y.

(c) Hence, find the value of h and k.

and k are constants,

у.

zefry@sas.edu.my