
2.2 Linear congruences

The most basic class of congruences are linear congruences, viz., congruences
of the form

ax ≡ b (mod m) (1)

to be solved for x. By definition (1) is soluble if and only if m|(b − ax) for
some x, and this is true if and only if b− ax = my for some x and y. Hence
(1) is soluble if and only if

ax + my = b (2)

for some x, y ∈ Z. To investigate the solubility of linear congruences we must
answer the question: given integers a and m, which integers can be written
in the form ax + my with x, y ∈ Z? To solve this problem we need to recall
the notion of the gcd.
Theorem (a) If a, b ∈ Z there exists a unique non-negative integer g such
that

(i) g | a and g | b, and
(ii) if h | a and h | b then h | g.

(b) If g is the integer from part (a) then g = ar + bs for some r, s ∈ Z. 2

We call g the greatest common divisor or gcd of a and b and write g =
gcd(a, b). It also follows that a number m has the form ax + by if and only
if g | m.

To calculate g, r and s we use the Euclidean algorithm. We may suppose
that a and b are both positive. Let a1 = a, a2 = b, r1 = s2 = 1 and
r2 = s1 = 0. We repeat the following procedure until we get ak+1 = 0. If we
know at choose q such that 0 ≤ at+1 = at−1−qat < at and put rt+1 = rt−1−qrt

and st+1 = st−1 − qst. When ak+1 = 0 then put g = ak, r = rk and s = sk.
As we can easily prove at = art + bst for each t we have g = ar + bs.

Returning to congruence (1), or equivalently equation (2), we see that it
is insoluble if g = gcd(a, m) - b. Otherwise if g | b write a = ga′, b = gb′ and
m = gm′ and note that (1) is equivalent to

a′x ≡ b′ (mod m′). (3)

Now if g = ar + ms then 1 = a′r + m′s ≡ a′r (mod m). Multiplying (3) by
r gives

x ≡ b′r (mod m′)

as the general solution of (1). Note that in general we get a solution mod-
ulo m′, and this is equivalent to g different solutions modulo m.

We note that if g = gcd(a, m) = 1 then the congruence (1) has a unique
solution modulo m. As this is quite a desirable state of affairs then we
introduce a piece of terminology; integers a and b are said to be coprime, or
a is coprime to b, if gcd(a, b) = 1. The condition of a and b being coprime is
equivalent to the solubility of the congruence ax ≡ 1 (mod b) for x. It easily
follows that if a is coprime to b and a ≡ a′ (mod b) then a′ is coprime to b.
Also if a is coprime to c and b is coprime to c, then ab is coprime to c.

A useful property of coprime numbers is that their “least common mul-
tiple” is their product.
Proposition If m and n are coprime, and if m | a and n | a then mn | a. 2
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With a little more effort one can get similar results giving the value of(
±3
p

)
, then

(
±5
p

)
and so on. Alas the work involved steadily increases. There

is however a general result which subsumes all these cases. This result,
conjectured by Legendre, and proved by Gauss is the celebrated Law of
Quadratic Reciprocity. It can be proved by an ingenious argument using
Gauss’s Lemma.
Theorem (Law of Quadratic Reciprocity) Let p and q be distinct odd primes.
Then (

p

q

)
=

(
q

p

)
unless p ≡ q ≡ 3 (mod 4) when(

p

q

)
= −

(
q

p

)
.

2

Using this result the practical computation of Legendre symbols is now
straightforward.

4 Diophantine equations

4.1 Sums of squares

We now turn to the subject of sums of squares. The basic problem is how
to express a given number n ∈ N as the sum of integer squares using as few
squares as possible. Note that we admit 0 = 02 as a square. Putting the
question another way we ask which numbers are sums of two squares, sums
of three squares and so on. If we consider the numbers from 1 to 100 we
find 10 of them are squares, 43 are sums of two squares, 86 are sums of three
squares, and all are sums of four squares. We may surmise that all natural
numbers are sums of four squares, and this turns out to be true.

It is easy to see that if n ≡ 3 (mod 4) then n is not the sum of two
squares, and if n ≡ 7 (mod 8) then n is not the sum of three squares. Hence
there are infinitely many numbers which are not sums of three squares. The
following result gives a further restriction on which numbers are sums of two
squares.
Lemma If p is a prime number with p ≡ 3 (mod 4) and p | x2 + y2 where x,
y ∈ Z, then p | x and p | y, and so p2 | x2 + y2. 2

Corollary If n = x2 + y2 then n = r2m where m is a sum of two squares
which is divisible by no prime p satisfying p ≡ 3 (mod 4). 2

This corollary says that if n is the sum of two squares and

n =
∏
j

p
rj

j

is the prime factorization of n, then rj is even whenever pj ≡ 3 (mod 4). If
we consider the numbers n up to 100 we find that if n satisfies this condition,
then n is the sum of two squares. We now ask for any n whether this condition
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