Nutrients

- the three macronutrients: carbohydrates, fats and proteins
 - all contain oxygen, carbon and hydrogen
 - protein also has nitrogen and sulfur

Tests

Starch – iodine solution

- add iodine solution into the food
- if it turns blue-black: starch is present
- if it stays orange/yellow: no starch is present _

Reducing sugars - Benedict's solution

- e.g. glucose -
- add benedict solution and heat it in a hot water bath
- turns from blue to green to yellow and finally red if sugars are present _

Protein - biuret test

- use Fehling's Solutions A and B -
- from Notesale.co.uk 13 of 32 add sodium hydroxide to the solution and shake well -
- then add pale blue copper sulphate solution _
- should turn purple if present _

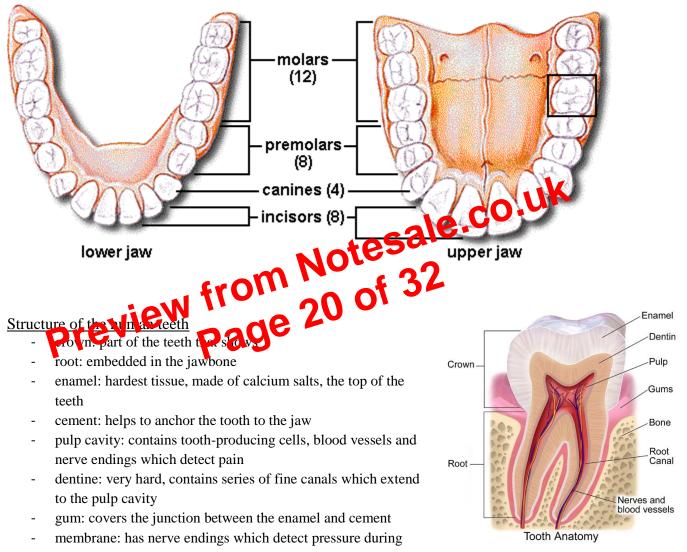
Fats - ethanol

- very small amount fethano involva ad
- snale or crush the food to make it dissolve
- filter or dilute the food and ethanol
- mix so that you get a clear liquid _
- add to a test tube of water
- a white emulsion (milk-like) indicates the presence

Importance of macronutrients

Carbohydrates

- needed to give the body energy _
- starch and sugar are the two types of carbohydrates
 - starch is found in cereals, corn flour, potatoes, pasta and flour 0
 - sugar: fruit, veg, honey, milk 0


Fats

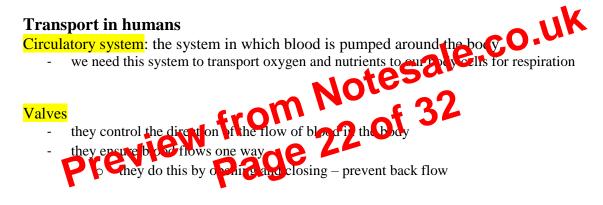
- help to provide concentrated sources of energy
- help to insulate the body in cold weather
- saturated fats: obtained from animal sources, e.g. butter and lard
- polyunsaturated fats vegetable sources e.g. sunflower oil _

Oral health

Types of teeth

- incisor: for cutting and biting
- canine: for holding and cutting
- premolars: for chewing and crushing
- molars: chewing and crushing

chewing and biting


Transport in plants

How water travels through the plant

- 1. Osmosis occurs to move water and inorganic ions from the soil to the root hair cells, down a concentration gradient
- 2. the inorganic ions and water travel to the xylem tube, which moves them to the leaves
- 3. the water and inorganic ions leave the xylem and is absorbed by the cells in the leaves

Transpiration: the evaporation of water at the surface of the mesophyll cells followed by loss of water vapor from plant leaves, through the stomata

Wilting: occurs if water loss exceeds water uptake – cells become flaccid and tissues become limp

The body contains a 'double circulatory system' – one circuit pumps blood to the lungs – blood becomes oxygenated

- the oxygenated blood then enters the second circuit, which takes oxygen both to the brain and the entire body

The heart

Pulmonary veins: transports oxygenated blood from the lungs to the left atrium

Aorta: transports oxygenated blood from the heart to the rest of the body and the brain

Vena cava: transports deoxygenated blood from the body to the heart

Pulmonary artery: transports deoxygenated blood from the heart to the lungs

Hepatic portal vein: transports blood from the alimentary canal to the liver, blood is rich in nutrients to be produced by the liver

Renal artery: supplies kidney with oxygenated blood

Gas exchange systems

Parts of the gas exchange system: in lungs

Trachea

- windpipe -
- tube that carries air towards the lungs -
- C-shaped rings of cartilage prevent the trachea from collapsing -

Larynx (1997)

- voice box _
- _ air passes through here during breathing

Bronchus

- first branch from the trachea -
- one bronchus for each lung _

Bronchiole

- final branch -
- very fine branch leading into the alveolus _

Alveoli

tiny round spaces filled with air and surrounded by capillaries **CO**. UK us air sacs where gas exchange takes place **27** 06 32 -

Alveolus

- _
- _

Pulmora

delivers deoxygenated by od a nigh pressure from the right ventricle of the heart to lungs

Pulmonary vein

returns oxygenated blood to the heart -

Inside the alveolus

- deoxygenated blood enters -
- oxygen diffuses into red blood cells
- carbon dioxide diffuses out of the blood plasma
- oxygenated blood moves towards the body -

Homeostasis

Definition: the maintenance of a constant internal environment

Maintenance of a constant body temperature

Sweating

- sweat glands near the surface of the skin begin to secrete sweat in hot, humid weathers -
- the sweat absorbs the bodies heat and allows it to evaporate -
- the vessels are bought near to the surface of the skin to reduce distance heat has to travel to escape
- sweating allows the body to cool down

Shivering

- muscles in limbs start to contract and relax
- this increases the rate of respiration and the amount of energy released
- shivering heats up the body _

Vasodilation

- _ dilatation of blood vessels
- decreases blood pressure -
- allows the body to quickly lose heat -
- Notesale.co.uk the lumens of blood vessels (arter n s – sinan branch of y, leading into capillaries) start widening
- ant of blood flow flowing to the surface of the skin this increase
- weating Da is upen lost by radia o

Vasoconstriction

- constriction of blood vessels -
- increases blood pressure -
- causes arterioles to be lower to reduce the amount of blood flowing to the surface skin -
- less heat is lost results in shivering _

Concept of negative feedback

- ensures that changes are reversed and returned back to the set level _
 - e.g. temperature changes, glucose levels

Process

- 1. blood temperature changes with body internal temperature
- 2. when blood vessels flow through the brain, the hypothalamus detects this change
- 3. it sends electrical impulses to the rest of the body so that it can start heating or cooling itself