Fajan's Rule:

This rule is used to decide relative ionic & covalent character in a molecule. A molecule is predominantly covalent if

- (I) Smaller the size of cation.
- (II) larger the size of anion.
- (III) greater the charge on cation and anion.
- (IV)ion does not have inert gas configuration but it possesses pseudo inert gas configuration (18 electrons in the ultimate shell).
- LiCl > NaCl > KCl > RbCl > CsCl (I) decreasing covalent character due to increase in the size of cation
- NaF > NaCl > NaBr > NaI (II) decreasing ionic character because of increase in anionic size
- NaF > Na₂O > Na₃N (III) $\frac{1}{1}$ increasing covalent nature due to increase of charge on anion and increase in size of anion
- (IV) CuCl and NaCl

$$[Cu^+] = [Ar]3d^{10}; [Ne^+] = [Ne]$$

Cations with 18-electron shells (pseudo inert gas configuration) has grater polarising power than 8electron shell (inert gas configuration) ion with the same charge and size. Thus, CuCl is more covalent than NaCl.

Hydrogen Bonding:

- (I) The concept of H-bonding was introduced by Latimer and Rock Ch. CO. UK

 (II) H-bonding is said to be formed when slightly acids to (II) H-bonding is said to be formed when slightly acidic to design attached to a strongly electronegative atom such as F, O and N is held with weak the forces by the non-bonded pair of electron of another atom. That is , it is a dipole of pole interaction.
- (III)Of all the electronegative color coms, only ... enter into stable H-bond formation.
- (IV) The weak electrostate interaction leading the H-bond formation is shown by dashed(.....) lines.
- 🔂 electronegativity 💯 ie and stronger is the H-bond. For example,

$$\delta^{-}$$
 δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} F H > O H

Intramolecular H-bonding;

This type of H-bonding occurs when polar H and electronegative atom are present in the same molecule.

(a) o-hydroxy benzaldehyde

Intermolecular H-bonding

This type of H-bonding takes place between hydrogen and electronegative element (like F,O,N) present between molecules of the same substance (H₂O and H₂O) or different substances (H₂O and NH₂).

