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(00]
Theorem:-Every bounded monotonic sequence {an}n _ 4 is convergent.

1

(0 0]
Proof:-Assume that {an}n -1 is an increasing sequence.

Since {an}n Ozo 1 is bound, the set S ={ay,a,,...... e P } has an upper bound.

By completeness axiom it has a least upper bound L.

Let € > O,then L — €is not an upper bound of Ssince L is the least upper bound.
Thus 3 anumber ayin Ssuchthatl — e < ay < L forsomeinteger N.

Since the given sequence isincreasing, we have ay < a, for n > N.

Hence L—e¢<ay<a,<L; vVvn=N.

Thus -e<ay—-L<a,—-L<L-L, Vn=N u\‘

>—-e<ap,—L<0; Vn=N
> —<¢<a,—L<s¢; nﬁO"e

‘:> la, — Llﬂ Om

Gedts 410
Pge%e{an} Re@'g

Example:7) Let {an}nozo 0 be the sequence defined by ay = 0 and a,4q = a2 + i, vV n=0.

Show that {an}n (: o converges.

Solution:-Using the above theoremit is enough to prove that the sequence is bounded and

increasing.
(i) To prove boundedness
. 1
Claim that Ian|<5; n=0

1
a0=0 $|a0|=0<5

Assume that Ian|<%; vn=0.

11 11 1
Thenlan+1|=a%+z<(5)2+z=5 [~ an=|an|2<(§)2]
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On the other hand if the sequence of partial sums {s,},-, diverges, then we say that the
series Yo, a, diverges. In this case limy,_,, S, = £ orlim,,_,« Sy, is not unique,

then X2, a; is diverges.

Note:-If lim,,_, S, is not unique then ) a,, oscillates.

Example:-1) Determine whether the series };°_; n is convergent or divergent.
If it converges determine itsvalue.

Solution:-The sequence of partial sumis s, = X i

This is known series and its value can be shown to be

n . _ nn+1)

A Uk

So, to detemine if the series is convergent we will first need to se\ée GQC& of partial
sums, tesa
n(n+1) & @
is verge or&%

Now, e\bl lim,,_, n(n+1) %gA
Th?efore the sequence OB ,ﬁ' s diverges to o0.So the series diverges.

1 1

Example:-2) Show that Zilm =5t Z-I_ L. --converges and find the sum.

1
————forn>1
nn+l) n n+l

e 5= Ty (134 G- D (5D 16

Solution:-By partial fraction

n+1
2 liMy, oy Sy = limy o 1 — — =1
b n-oo°2n — MNn—00 n+1 -
1
Hence —conver esand Y2 —— =
Zn In(n+1) & Zn_ln(n+1)
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Note:-The series ). is called a telescoping series because when we write the partial

Tll()

sums all but the first and the last terms cancel.
. . 1. . .
Example:-3) Determine whether the series Z;‘f’zlz—nls convergent or divergent. If it converges

determine its value.

Solution: - The sequence of partial sum

1
Sp = ?=1;=—+ + +— + +——1—2—n

So, to detemine if the series is convergent we will first need to see if the sequence of partial
sums,

1 . .
{1- e }oeq is convergent or divergent.

In this case the limit of the sequence of partial sums is,

limy, 00 Sy = lim;, 0 1 6’@ a\e
Therefore, the sequence of ;‘fmmoﬂgent a% %&’LQHI also be convergent.

The value of the_sene l
Example:-4) consider the series1+2—-3+14+2 -3+ -+
Here lim,_,e S, =1o0r 30r0.

Hence lim,_ . S, is not unique. The series oscillates.
Activities

Determine whether the following series is convergent or divergent. If it converges determine its

value.
1 w (1\"
A) Xnm1 Gy @net ) 274 (5)
Vn¥i-vn
b) Z-a(—1)" d) L
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Note:-The converse of the above theorem is not true in general.

i.e If lim,,_,, a, = 0, then Y a,, may or may not converge.
Example: -7) The series Zf{;l% does not converge butlim,, ., a, = limn_,oo% = 0.
Theorem :-( The Test for Divergence)
Iflim,, 0o @, # 0 (does not exist ) then the series ;> a, is diverges.
Proof:-Suppose Y., a, is diverges, then lim, o, a,, = 0 by the above theorem

Hence by contra positive X, a,is diverges

Example:- 8) Show that the series X, 13 n dlverges

. . . n? . 1 1
Solution:- lim,,_,, a, = lim,_,,,—— = lim -#0 \4

5n24+4  nooo 5+4/n2 5
So the series Y. 15 ” dlverges by the Dlvergencga\@e‘g

Activities m N
Show that whethémolﬁ&rgseries Xe%n@& ;—dlve rgent.

P(ﬁzn a2 PO i

Some types of infinite series

1. Harmonic series

. . 1 1 1 1 ) . .
Definition:-the series Z:f:l; =1 +5 +§ + - +; + -+ =1is called a harmonic series.

. . 1. .
Note:- the harmonic series Z;‘f;l; is divergent (see example 7 above)

2. The Geometric Series
Definition:-The series Z _ar™” l=a+ar+ar?+--+ar™1..iscalled ageometric
series. r is called the ratio of the geometric series .

Theorem:- the geometric senesZ —ar™ I where a # 0 convergesif |r| < 1anditssumis

DEPARTMENT OF MATHEMATICS 18
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Therefore, lim,,_,,, S,does not exist since it oscillates between 0 and a.

Hence geometric series diverges.

Case (iii) If |[r| > 1 ,then ™ > w0 asn — oo,

a(r™-1 a .
a1 o —limy, o —— =0

Thenlim s, = lim
n—-co=n n-o r—1 1-r 1-r

The series is diverges.
Therefore, for |r| = 1, the geometric seriesis divergent.
Hence theorem proved.

Example:- 9) Determine whether the each following series converges or diverges. In case of

convergence find the sum. O U\A
A S b) 13 () ,‘es‘a.\ )T

Solution:-a) Y. 14n1 -= ﬁéﬁ?\ Sgeomet et IQ —and a=1
P(eS\r,c Xl}‘| < 1 t ngges

1-r 1—2

4
n=1 4n—1 T §

-2\ 1. o -2
b) Yot (?) is ageometricserieswith 7 = — and a = 3.

. -2 .
Since |r| = |?| < 1, the series converges
o 3(—_2)"_1_L_ 3 _9
n=1 PRy = e
3 1-r 1_(?) 5
oo 4'5 _ o 4 n-1 hichi . . ithr = 5 da = 4
C) Xt — T = Zn=1 () Which is a geometric series with r =,anda = 4.

. 5 .
Since |r| = |Z| > 1, the series diverges.

The above theorem can be used to express as a non terminating repeating decimals as a rational
number.

Example:-10) Express decimals as a rational number
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Activity

Find radius and interval of convergence of the following series
) o XM . N\ xn
@) X" D) S0 T (D" (2) %

3.3 Algebraic operations on convergent power series

We may also add, subtract, multiply and divide the series just like polynomials. The following
theorem states the rules for algebraic operations on convergent power series.

Theorem:-The Algebra of Power Series

Assume that f(x) = ag+ a;x + a,x% + azx3 + - and
g(x) =bo+byx+ byx?+bsx3+ -+ for|x| <R.Then O U\k
.

for |x| <R, we have tesa'\e .C

() Fo)+g() = % p 'XAD
(i) fCo an —

?)( é ?b 9 go)x + (agb, + ayby + azbg)x? + -
[ tained

iv)  f(x)/gx)is long division, if g(x) # 0 for |x| <R

3.4 power series Representation of functions

In this section we will see how to represent certain types of functions as a sum of a power series
by manipulating geometric series or by differentiating or integrating such a series.
Representation of functions as a power series is useful for integrating functions that do not have
elementary anti-derivatives, for solving differential equations and for approximating functions
by polynomials.

Consider theequation 1+ x +x2+ x3+x* 4+ =3 x™ with |x] <1 ---———-—-—= (i)
Observe that the seriesis a geometric series with first term a = 1 and common ratior = x.

Since|r| = |x| < 1, it converges and equation (i) gives

1

— =1+x+x24+x3+x*+- =37 x™ with|x| <1 - (i)

L . 1 .
Hence, equation (ii) shows the function f(x) = T, asasum of power series.
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Example:-1) Expres

Solution:-We know that — =" X" S—

Now replacing x by —x?2, we get

1 1

— — J'»© 42
14x2 1-(-x2) n=o(—x*)"

— y© ® (= 1)nx2n
=1—-x24+x*—x%4+--
Because this is a geometric series it converges when |—x?| < 1, thatis x? < 1 or |x| < 1.

Therefore, the interval of convergence is (—1,1).

Example:-2) Express—5 as the sum of a power series and find the interval of conve\iv

Solution:-Given  f(x) = x% ‘C
1 5 tesa\e
We know that T _(5 x) _5(1_ N@ ’X:LO

(e{cﬁ@lé\hgn (= 5%
P

n 05n+1

. . X
This series converges for |§| <1

. . 1,
Therefore, the power series representation of f(x) = —is- and the interval of

x
n 05n+1

convergence is (—5,5).

Example:—Expressm as the sum of a power series and find the interval of convergence.

Solution:-Given  f(x) = )

x _ .1 — © AT = T _A\n,n+l
We know that—— = x 1_(_4x)—x2n=0( 4x) meo(—4) ™,

. 1
The series converges for |—4x| <1 = 4|x| <1 = |x| <3

Therefore, the power series representation of f(x) = 4—+1 is Z —o(— 4)"x"*1 and the interval

of convergence is ( — T’Z )
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Activity

Find a power series representation for the following functions and determine its interval of
convergence

a) f(x) =

b) g(x) = = o f(x) =

1+x3 1+x3

3.5 Differentiation and integration of power series

A power series X", ¢, (x — a)™ with a nonzero radius of convergence is always differentiable
and the derivative is obtained from Y., ¢, (x — a)™ by differentiating term by term, the way
we differentiate polynomials.

Theorem:-If the power series Y>> ¢, (x — a)™ has radius of convergence R > 0, then the
function f defined by f(x) = co+c1(x —a@) + c,(x —a) 2+ = X0 jcpn(x —a)™

Is differentiable (and therefore continuous) on the interval (a — R,a + R) anK

(a) f'(x) =c; +2c,(x—a) +3c3(x— a)2 YevaQ a)™1

(b) ff(x)dx =C+ Co(y“a)N C{ a)3
W+§ S “) 9
he radii of convergenc of the power series in Equations (a)and (b) are both R.

Note:-Equations (a) and (b) can be rewritten in the form

St =@ = o [ealx — @)"]
+ [0 jcn(x—a)"1dx =30, [ cn(x — a)"dx

Example:-1) Express as a power series by differentiating the equation

1
(1-x)?

1

—=14+x+x2+x3+x*+-- =¥  x™and find radius of convergence.
1-x

Solution:-Differentiating both sides of the equation

—=1+x+x2+x3+xt+ =30 x"

We get

(1_1x)2 =1+2x+3x%2 4+ =37 nx"t1=3> (n+ 1)x"
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Properties

1. If T is a period off, then nTof T is also a period of f for any positive integer
n, thatis, f(x + nT) = f(x) for all real number x in the domain of f.

2. If the period of f(x) is T, then the period of f(ax + b) is la

3. If f(x) and g(x) are periodic functions having the same period T, Then the
period h(x) = ¢, f(x) +c,g(x) isalso T.

4. Iff(x) = c, where cis a constant, then f is periodic and every T > 0 is a period.
Thus there exists no smallest period, so does not have the fundamental period.

5. The sum of the number of trigonometric functions in sin nx and cosnx is also a
periodic function with period the least common multiple of the periods of each
term of the sum.

Example:-3) f(x) = sinx + %sian + %Sin?)x + %sin4x is a periodic function. \4
The periods of the terms are 2, n . and - respectlve\éo t@‘oM the
given function is the least commonﬂ@& e periods which is equal to 2m

Example:-4) f(x) _\Cﬁ (“merx)?s a@ dMﬁ@n with period 2.
W"@Mt i serlp ag

Definition: - the series the form 7 + a,cosx + bysinx + a,cos2x + b,sin2x + -+

= % + Z;‘?;l(akcoskx + bksinkx) is called a trigonometric series.

A trigonometric series is a periodic function with period 2. the convergence and
divergence of the series depends on the value of x chosen and the coefficientsa,and b,,.

Trigonometric values

Let k be an integer then,

1.sinkmt =0 =sin(k + )7 4. cos (k+§)n= 0
2. cos k= (—1)k 5.cos 2(k+ D=1
3. sin (k +%>‘I‘[ = (—=1)k 6.cos(k+ 1)1 = (—1)k+1!
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Note: - The Half-Range cosine series in [0, 7] is obtained by putting [ = .

Half-Range sine series

Let f(x) be defined in the range [0,1]. in order to obtain Fourier series we construct a
new function in such a way that the function f (x) plus its extension yield an odd
function.

Define F(x)=f(x) for 0<x<lI
=—f(=x) for —1<x<0

So that F(x) is an odd function in [—[, [] . Hence the Fourier series of F(x) contains only
sine terms.

— yo o kmx
F(x) = X7~ by sin z

xCO ‘UK

Where a,=7[  F()dx =0, b =7[" f(x) cosk@‘ =
_ Sm a e
be=1]' F(x)sm—dxﬁ@ sm’—k‘Q—Tfof(x)sdex
Wﬁ(/@)m 06]2 ()" )

|n@(a@}wnouner s?aa@ Half-Range Fourier Sine series which is defined

fx) =%p- 1bksmkﬂ

Where a, = %fol f(x) sinklﬂdx

Note: - The Half-Range sine series in [0, 7] is obtained by putting [ = 7.

Example:-6) Find the Half-Range cosine and Sine series for the function

_(x for 0<x<1
f(x)_{Z—x forl<x<2

Solution:-Here [ =2—-0= 2

i) the Half-Range cosine series

kmtx

a oo
flx) = 7" + e, a cos——
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Example:-Find the domain and range and sketch the graph of g(x,y) = /9 — x? — y?

Solution:-The domain of g is

D ={(x, )9 —x*—y* =0} = {(x,y)|x* +y* < 9}

Which is the disk with center (0,0) and radius 3.

The range of gis {z|z = /9 —x? —y?,(x,y) € D}

Since z is positive square root, z = 0. also

9—x?2—y2<9 = ,/9-x?—-y?<3

So the range is{z|0 < z < 3} = [0,3].

The graph has the equation z = \/9 — x? — y?,

We square both sides of this equation to obtain z2 = 9 — x2 — y?,or x2 X}K

Which we recognize as an equation of the sphere wit @%@A\g and radius 3. But, since
'9

z 2 0, the graph of g is just the top half of thg

Level Cung \L\' -‘( Om llO
So @\ﬁ r odsforw g

ow diagrams
third method, borrowed from mapmakers,
is a contour map on which points of
constant elevation are joined to form
contour curves, or level curves.

The level curves of a function f of

two variables are the curves with
equations f(x,y) = k, where k is a

constant (in the range of f)

Note

4+ Alevel curve f(x, y) = kis the locus of all points at which f takes on a given value k. In

other words, it shows where the graph of f has height k.
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an arrow diagram. If any small interval (L — ¢,L + €) is given around L, then we can find a disk
Dg with center (a, b) and radius § > 0 such that f maps all the pointsin Dg
[ except possibly (a, b)]into the interval (L — ¢, L + €).

Note

The above limit definition refers only to the distance between

(x,y)and (a, b). It does not refer to the direction of approach.

Therefore, if the limit exists, then f(x,y) must approach the \)\(

same limit no matter how (x,y) approaches (a, b). Thus, if O
\%erentllmlts then it

we can find two different paths of approach along wlklé

follows thatlim(y y)q,p) f(x, y) does note
ot
If§ é\"\@&\l) - ( 30’6 gpath C, and f(x,y) - Lyas (x,y) -
)g,o

(a, ng a path Cz,ﬂea‘ 1 # Ly thenlimg, ), qp) f(x,y) does not exist.

2 2
Example:- Fmdhm(xy)_)(oo) v > if it exists.

Solution:-Let f(x,y) = x% — yz/x + y2.
First let us approach (0, 0) along the x — axis. Theny = 0 gives f(x,0) = x?/x?>=1Vx # 0,
s0

flx,y) »1 as (x,y) - (0,0) along the x — axis

We now approach along the y — axis by puttingx = 0. Then f(x,0) = —y2/y? = —=1Vy # 0,
S0

flx,y) » -1 as (x,y) - (0,0) along the y — axis
Since f has two differentlimits along two differentlines, the given limit
doesn’texist.
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_ af _62f_622
(fy)y_fyy f22 (ay)—ﬁ—ﬁ

. 92 . . . .
Thus the notation fy.,, (or Fafx) means that we first differentiate with respect to x and then

with respect to y, whereas in computing £, the order is reversed.

Example: - Find the second partial derivatives of f(x,y) = x3 + x2y3 — 2y?

Solution:We know that
fr (x,y) = 3x? + 2xy3 fy(x,y) = 3x2y?— 4y

Therefore

fex = % (3x2 + 2xy3) = 6x + 2y3

fry = :—y(sz + 2xy3) = 6xy? \4

a
fyx = 5(37523/2 —4y) = 6xy*?

vy = 2= (Bx2y? — 4y O‘e
fne\l; £ Om MO0

f\\,

SuSpose f is defined o? isk D that contains the point (a, b). If the functions
fiy and f,,, are both continuous on D, then £, (a, b) = f,,(a, b)

5.5 Tangent planes and Total differential
Total Differential

The differentials dx and dy are independent variables; that is, they can be given any values.
Then the differential dz, also called the total differential, is defined by

dz = f, (x,y)dx + f,(x, y)dy = Z—zdx + Z—idy
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5.10 Extreme values under constraint conditions: Lagrange’s multiplier

Let f and g differentiable at (x,yo). Let ¢ be the curve g(x,y) = c that contains (xg, V).
Assume that c in smooth and that (x,y,) is not an end point of the curve. If grad g (xg,y0) # 0
and f has an extreme value on c at (xg,yo) then there is a number A such that grad
f(x0,y0) = A gradg(xy,y,). The number A is called Lagranges Multiplier.

Example:- Letf (x,y) = x? + 4y3. Find the extreme values of f on the ellipse x? + 2y% = 1 and
points at which they occur.
Solution:-Let g(x,y) = x? + 2y? so that the constraintis g(x,y) = x? + 2y%2 =1
Since grad f(x,y) = 2xi + 12y?j
Grad g(x,y) = 2xi + 4yj
Use these equations to find x,y constraintx? + 2y? = 1 ---————-(1) UK

gradf(x,y) = Agradg(x,y)
2xi + 12y%j = A(2xi + 4y)) O"e
2x = A( ﬁmw 'L'LO
a“ o0 )

bl
ByPugon >),e|therx 9

1 1
Ifx =0from (1) y = \/_ ('E)’(O’_ﬁ)
IfA = 1from (3) 12y2=4y:>y200ry=§
Ify =0=from(1) x = +1 = (1,0), (—-1,0)
_1 VT (7Y V71
Ify—3:>from(1)x—i . :>(3 ,3),( . ,3)

-~ The extreme values of f occurs at

(05 (0D a0e1(E.2) (-1

Now, f(O,%)=\/Z f(o,—%)=—\/7

fam=1=£-10;  f(L)=E=r(-223

3°3 27 3°3
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d
We will compute the double integral by first computing fc f (x,y)dy and we compute this by

holding x constant and integrating with respect to y as if thiswere a single integral. This will give
a function involving only x’s which we can in turn integrate.

We've done a similar process with partial derivatives. To take the derivative of a function with
respect to y we treated the x’s as constants and differentiated with respect to y as if it was a
function of a single variable.

Double integrals work in the same manner. We think of all the x’'s as constants and integrate
with respect to y or we think of all y's as constants and integrate with respect to x.

Let’s take a look at some examples.
6.2 Double integrals over rectangular regions

Examplel. Compute each of the following double integrals over the indicated rectangles

(a) [flz 6xy?dA =[2,4] x[1,2] O ‘\)\4
2,2 - ¢
) Jfg {x?y?+ cos(mx) + sin(y)}dA, esa\a 1]

© k5o (2X+3y)2 da, MOWS]‘ 'LILO

(d) [ [2x WA‘ 9 5 0,
So@ﬂ‘e)\# 6exyzdfp @ x[?z]@

It doesn’t matter which variable we integrate with respect to first, we will get the same answer
regardless of the order of integration. To prove that let’s work this one with each order to make
sure that we do get the same answer.

Method 1:-In this case we will integrate with respect to y first. So, the iterated integral that we
4 (2
need to computeis, [f; 6xy2dA = [, [, 6xy2dy dx

When setting these up make sure the limits match up to the differentials. Since the dy is the
inner differential (i.e. we are integrating with respect to y first) the inner integral needs to have
y limits. To compute this we will do the inner integral first and we typically keep the outer
integral around as follows,

4

I 6xy2dA= [, (2xy®)|7dx
= f;(16x — 2x)dx
= f; 14x dx
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Solutions:- a. ffD eYdA, D={(xy)|1<y<2 y<x<y3}

Okay, this first one is set up to just use the formula above so let’s do that.
2 y? 2 3
[y e/vda= [} [ ex/vaxdy = [} yex/s [ dy

2

= JilyeY — yeldy
1 2 1 2 1

=(=eV —Zey?2)|?= et —

(Ze S ey )|1 Se 2e

b. [, (4xy —y3)dA, Distheregionboundedbyy=vx andy = x3

In this case we need to determine the two inequalities for x and y that we need to do the
integral. The best way to do this is the graph the two curves. Here is a sketch.

=

So, from the sketch we gsee that the two inequalities are
0<x<1 x3 <y<vx

We can now do the integral

If, (4xy — y*)dA = [} [ (4xy —y®)dy dx

1 1
= Jo@xy?—2yH | dx

_ (Y2 _o9y7 1112
= f0(4x 2x +2X ) dx

— (L3 1.8 1 1341
_(12X PR +52X )|0

55
156

C. ff (6x%2 — 40y)dA, D is the triangle with vertices (0,3),(1,1),and (5,3).
D

We got even less information about the region this time. Let's us start this off by sketching the
triangle.
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Solution 1:- ff}, (6x? — 40y)dA = [}, (6x> —40y)dA + [f, (6x*— 40y)dA

1.3 5 3
= fo f_z)(_‘_3(6x2 — 40y)dydx + [, f;x+§(6xz — 40y)dydx

3
1,1 dX
2 2

1 5
= [, (6x2y — 20y?) |_2)3;+3 dx + [, (6x?y — 20y?)
= [, [12x3 — 180 + 20(3 — 2x)?]dx + [, [-3x® +15x% — 180 + 20(Gx +)2]dx

3
— [3X4_ 180x _?(3 _ZX)3]|(1)+[_T3X4 + 5x3 — 180x +%(§X+%) ] |i

935
3

Solution 2:This solution will be a lot less work since we are only going to do a single integral.

2y—1

5 (6x% —40y)dA = [}’ [ 'y(6x2 — 40y)dx dy
T, (63— 40y) ff:yy: \e.CO [\
G %’tesa-
- ﬁ‘% 0 2+2%r— —%;}9%)3]dy
P \ e\, \e éS%zg%r;)‘%Qy - 1%+ (— ~y+ 2)4]|i

= [ (2x® — 40xy)

935

Exercise

a. Evaluate jjxydA, D={(xy)0<x<1,x2<y<+x}
D

b.Evaluate f f (x + 2y)dA, where D is the region bounded by the parabolas y = 2x?and
D
y=1+x2
c.Evaluate ff x cosy dA,where D is bounded by y = 0,y = x?, andx = 1
D

Answers
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6.5 Surface Areas
In this section we apply double integral to the problem of computing the area of a surface area.

We found the area of a very spedial type of surface — a surface of revolution — by the method of
single-variable calculus. Here we compute the area of a surface with equation z = f(x, y), the
graph of a function of two variables.

Let S be a surface with equation z = f(x, y), where f has
continuous partial derivatives. For simplicity in deriving
the surface area formula, we assume that f(x, y) = 0 and
the domain D of fis arectangle. We consider a partition
P of D into small rectangles Rj; with areas AAj; =
Ax; Ay;. If (xl-,yj) is the corner of R;; closet to the origin,
let Py [xl-,yj,f(xi, yj)] be the point on S directly above

it. The tangent plane to S at P;;is an approximation to S
near P;;. So the area ATy of the part of this tangent

plane (a parallelogram) that lies directly a % is an
approximation to the area AS;; o Q at lies

Qm XX ATy is an
appe@to improve as ||[P]| = 0.

directly above R

approximation to the total area of S, and tﬁm@t

Therefore, we define the surface are

AT,

To find a formula that is ore convenient than Equation 1 for computational purpose, we let a
and b be the vectors that start at P;j and lie along the sides of the parallelogram with area ATj;

(see in following figure). Then AT;; = [a x b| and fy(x;,y;) and fy(x;,y;) are the slopes of the
tangent lines through P;; in the direction of aand b. Therefore
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