(b) Using equation $\beta = b + q$ [From $B_4H_{10}^0$]

we get $\beta = 4 + 0 = 4.$

This bonding topology corresponds to sytx number 4102*. The 4102 bonding shown in fig. 7.14 is consistent with these parameters and fits well for the observed structure of the molecule. There are four three centre two electron B-H-B bonds, one B-B bond, and six normal B-H bonds. B-H bond is formed by the overlapping of 1s-orbital of H-atom and one of the sp^3 hybrid orbitals of boron. The B-B bond is formed when sp^3 hybrid orbitals of two boron atoms overlap each other. The B.....H.....B bond is formed when 1s-orbital of H-atom overlaps with sp^3 hybrid orbitals of two boron atoms. Here, the contribution of electrons is being done by H- atom and one boron atom.

Carboranes Or Carbaboranes.

These are polyhedral boranes that contain frame work carbon atoms as well as boron atom. A carborane may also be defined as a boron-hydrogen compound in which carbon atoms occupy structural sites similar to those occupied by boron atoms.

we know (i) a-b=x+y 2=2 2=2 $\begin{cases} \text{in the proposed struct re } f \\ B_2H_6 ; x=\text{no. of } B_2H_4 \text{ ups} \\ (=2)+2 \text{ of } B_-B \text{ bonds} = \end{cases}$ $(ii) \quad \beta=s+t$ 2=2+0 2=2 $\begin{cases} \text{in } B_2H_6 \text{ structure} \\ s=\text{no. of } B-B-B \text{ bonds} (=2) \\ \text{And. } t=\text{no. of } B-B-B \text{ bonds} \end{cases}$ Hence sytx = 2002. \end{cases} We know (i) $\alpha-b=x+y$

Hence sytx = 2002.

We know (i)
$$a - b = x + y$$
 $7-4 = 2 + 1$
 $3 = 3$

in the propored structure of B_4H_{10} ; $x = no.$ of BH_2 groups $(=2) + 2 no.$ of BH_3 groups $(=0)$
 $= 2 + 0 = 2$
And. $y = no.$ of $B - B$ bonds = 1

(ii) $\beta = s + t$
 $4 = 4 + 0$

in B_4H_{10} structure, $s = no.$ of $B - H - B$ bonds bonds $(=4) = 4$
And. $t = no.$ of $B - B - B$ bonds.

Important series of carbonanes are:

(i) Closo-carboranes. These are such carboranes in which two BH units of a B_nH_n²⁻ borane anions are replaced by the isoel- electronic CH units.

(ii) Carboranes having 1, 3, or even 4 carbon atoms and including arachno, nido as well as closo structures.

Nomenclature. Since in most cases, isomers are possible, nomenclature of

Fig. 7.16. Some representative carboranes showing numbering schemes.