Surface Area and Volume

Surface area of a cylinder Distance formula

 $2\pi r^2 + 2\pi rh$

Surface area of a cone

 $\pi r l + \pi r^2$

I = slant height

Surface area of a sphere

 $4\pi r^2$

Volume of a pyramid

 $V = \frac{1}{3}Ah$

Volume of a cone

 $V = \frac{1}{2}\pi r^2 h$

Volume of a sphere

 $V = \frac{4}{3}\pi r^3$

 $1m^3 = 1kL$

 $1 \text{cm}^3 = 1 \text{mL}$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Saving and Borrowing

Compound Interest

$$A = P(1+R)^n$$

Depreciation

 $A = P(1 - R)^n$

Coordinate Geometry

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Parallel & Perpendicular lines

Parallel if: $m_1 = m_2$

Perpendicular if: $m_1 \times m_2 = -1$

Point-gradient form of a linear equation

 $y - y_1 = m(x - x_1)$

Tests for quadrilaterals

Parallelogram

- Both opp. angles =
- Both opp. sides =
- Both opp. sides ||
- One opp. sides = & ||
- Diagonals bised

Rhombus

- All sides =
- Diagonals bisect @ 90°

Square

- All sides = AND 1 x 90° angle
- Diagonals = & bisect @ 90°

Trigonometry

Trigonometric ratios of complementary angles

 $\sin A = \cos(90 - A)$

 $\cos A = \sin(90 - A)$

Tangent ratio

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$

Exact trigonometric ratios

Unit circle

 $\sin \theta = y$ -coordinate of P

 $\cos \theta = x$ -coordinate of P

$$\tan \theta = \frac{\text{y-coordinate of } P}{\text{x-coordinate of } P}$$

Acute Angles

sin(180 - A) = sin

tan(180 - A) = -tan A

- 1. The trigonometric ratios of acute angles are all positive.
- 2. Only the sine ratio of obtuse angles is positive.

The cosine and tangent ratios of obtuse angles are negative.

Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Two sides and two angles opposite them.

Cosine Rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{\left(b^2 + c^2 - a^2\right)}{2hc}$$

Three sides and one angle.

Area of a triangle

$$Area = \frac{1}{2}ab \sin C$$