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Chapter 1: Mechanics 5

2. Rotation: ~Fα = −m~α× ~r ′

3. Coriolis force: Fcor = −2m~ω × ~v

4. Centrifugal force: ~Fcf = mω2~rn
′ = −~Fcp ; ~Fcp = −mv

2

r
~er

1.4.2 Tensor notation

Transformation of the Newtonian equations of motion to xα = xα(x) gives:

dxα

dt
=
∂xα

∂x̄β

dx̄β

dt
;

so
d

dt

dxα

dt
=
d2xα

dt2
=

d

dt

(
∂xα

∂x̄β

dx̄β

dt

)

=
∂xα

∂x̄β

d2x̄β

dt2
+
dx̄β

dt

d

dt

(
∂xα

∂x̄β

)

The chain rule gives:

d

dt

∂xα

∂x̄β
=

∂

∂x̄γ

∂xα

∂x̄β

dx̄γ

dt
=

∂2xα

∂x̄β∂x̄γ

dx̄γ

dt

So:
d2xα

dt2
=
∂xα

∂x̄β

d2x̄β

dt2
+

∂2xα

∂x̄β∂x̄γ

dx̄γ

dt

So the Newtonian equation of motion

m
d2xα

dt2
= Fα

will be transformed into:

m

{
d2xα

dt2
+ Γα

βγ

dxβ

dt

dxγ

dt

}

= Fα

The apparent forces are brought from he origin to the effect side in the way Γα
βγ

dxβ

dt

dxγ

dt
.

1.5 Dynamics of masspoint collections

1.5.1 The center of mass

The velocity w.r.t. the center of mass ~R is given by ~v− ~̇R. The coordinates of the center of mass are
given by:

~rm =

∑
mi~ri

∑
mi

In a 2-particle system, the coordinates of the center of mass are given by:

~R =
m1~r1 +m2~r2
m1 +m2

With ~r = ~r1−~r2, the kinetic energy becomes: T = 1
2MtotṘ

2 + 1
2µṙ

2, with the reduced mass µ is given

by:
1

µ
=

1

m1
+

1

m2
The motion within and outside the center of mass can be separated:

~̇Loutside = ~τoutside ; ~̇Linside = ~τinside

~p = m~vm ; ~Fext = m~am ; ~F12 = µ~u
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26 Equations in Physics by ir. J.C.A. Wevers

1. Transfer along length l: MR =

(
1 0
l/n 1

)

2. Refraction at a surface with dioptric power D: MT =

(
1 −D
0 1

)

6.4 Aberrations

Lenses usually do not give a perfect image. Some causes are:

1. Chromatic aberration is caused by the fact that n = n(λ). This can be partially corrected
with a lens which is composed of more lenses with different functions ni(λ). Using N lenses
makes it possible to obtain the same f for N wavelengths.

2. Spherical aberration is caused by second-order effects which are usually ignored; a spherical
surface does not make a perfect lens. Incomming rays far from the optical axis will more bent.

3. Coma is caused by the fact that the principal planes of a lens are only plane near the principal
axis. Further away of the optical axis they are curved. This curvature can be both positive or
negative.

4. Astigmatism: from each point of an object not on the optical axis the image is an ellipse
because the thickness of the lens is not the same everywhere.

5. Field curvature can be corrected by the human eye.

6. Distorsion gives abberations near the borders of the image. This can be corrected with a
combination of positive and negative lenses.

6.5 Reflection and transmission

If an electromagnetic wave hits a transparent medium a part of the wave shall reflect at the same
angle as the incident angle, and a part will be refracted at an angle following from Snell’s law. It
makes a difference whether the ~E field of the wave is ⊥ or ‖ w.r.t. the surface. When the coefficients
of reflection r and transmission t are defined as:

r‖ ≡
(
E0r

E0i

)

‖

, r⊥ ≡
(
E0r

E0i

)

⊥

, t‖ ≡
(
E0t

E0i

)

‖

, t⊥ ≡
(
E0t

E0i

)

⊥

where E0r is the reflected amplitude and E0t the transmitted amplitude. Then the Fresnel equations
are:

r‖ =
tan(θi − θt)

tan(θi + θt)
, r⊥ =

sin(θt − θi)

sin(θt + θi)

t‖ =
2 sin(θt) cos(θi)

sin(θt + θi) cos(θt − θi)
, t⊥ =

2 sin(θt) cos(θi)

sin(θt + θi)

The following holds: t⊥ − r⊥ = 1 and t‖ + r‖ = 1. If the coefficient of reflection R and transmission
T are defined as (with θi = θr):

R ≡ Ir
Ii

and T ≡ It cos(θt)

Ii cos(θi)

with I = 〈|~S|〉 follows: R+ T = 1. Special is the case r⊥ = 0. This happens if the angle between the
reflected and transmitted rays is 90◦. From Snell’s law then follows: tan(θi) = n. This angle is called
Brewster’s angle. The situation with r‖ = 0 is not possible.
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Chapter 7

Statistical physics

7.1 Degrees of freedom

A molecule consisting of n atoms has s = 3n degrees of freedom. There are 3 translational degrees of
freedom, a linear molecule has s = 3n − 5 vibrational degrees of freedom and a non-linear molecule
s = 3n− 6. A linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count
double. So, for linear molecules this results in a total of s = 6n − 5. For non-linear molecules this
gives s = 6n− 6. The average energy of a molecule in thermodynamic equilibrium is 〈Etot〉 = 1

2skT .
Each degree of freedom of a molecule has in principle the same energy: the principle of equipartition.

The rotational and vibrational energy of a molecule are:

Wrot =
h̄2

2I
l(l+ 1) = Bl(l+ 1) , Wvib = (v + 1

2 )h̄ω0

The vibrational levels are excited if kT ≈ h̄ω, the rotational levels of a hetronuclear molecule are
excited if kT ≈ 2B. For homonuclear molecules additional selection rules apply so the rotational
levels are well coupled if kT ≈ 6B.

7.2 The energy distribution function

The general shape of the equilibrium velocity distribution function is
P (vx, vy, vz)dvxdvydvz = P (vx)dvx · P (vy)dvy · P (vz)dvz with

P (vi)dvi =
1

α
√
π

exp

(

− v
2
i

α2

)

dvi

where α =
√

2kT/m is the most probable velocity of a particle. The average velocity is given by
〈v〉 = 2α/

√
π, and

〈
v2
〉

= 3
2α

2. The distribution as a function of the absolute value of the velocity is
given by:

dN

dv
=

4N

α3
√
π
v2 exp

(

−mv
2

2kT

)

The general shape of the energy distribution function then becomes:

P (E)dE =
c(s)

kT

(
E

kT

) 1

2
s−1

exp

(

− E

kT

)

where c(s) is a normalization constant, given by:

1. Even s: s = 2l: c(s) =
1

(l − 1)!

2. Odd s: s = 2l + 1: c(s) =
2l

√
π(2l − 1)!!

30
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Chapter 8: Thermodynamics 37

8.9 Thermodynamic potential

When the number of particles within a system changes this number becomes a third quantity of state.
Because addition of matter usually happens at constant p and T , G is the relevant quantity. If a
system exists of more components this becomes:

dG = −SdT + V dp+
∑

i

µidni

where µ =

(
∂G

∂ni

)

p,T,nj

is called the thermodynamic potential. This is a partial quantity. For V

holds:

V =
c∑

i=1

ni

(
∂V

∂ni

)

nj ,p,T

:=
c∑

i=1

niVi

where Vi is the the partial volume of component i. The following holds:

Vm =
∑

i

xiVi

0 =
∑

i

xidVi

where xi = ni/n is the molar fraction of component i. The molar volume of a mixture of two
components can be a concave line in a V -x2 diagram: the mixing contracts the volume.

The thermodynamic potentials are not independent in a multiple-phase system. It can be derived
that

∑

i

nidµi = −SdT + V dp, this gives at constant p and T :
∑

i

xidµi = 0 (Gibbs-Duhmen).

Each component has as much µ’s as there are phases. The number of free parameters in a system
with c components and p different phases is given by f = c+ 2− p.

8.10 Ideal mixtures

For a mixture of n components holds (the index 0 is the value for the pure component):

Umixture =
∑

i

niU
0
i , Hmixture =

∑

i

niH
0
i , Smixture = n

∑

i

xiS
0
i + ∆Smix

where for ideal gases holds: ∆Smix = −nR∑
i

xi ln(xi).

For the thermodynamic potentials holds: µi = µ0
i +RT ln(xi) < µ0

i . A mixture of two liquids is rarely
ideal: this is usually only the case for chemical related components or isotopes. In spite of this holds
Raoult’s law for the vapor pressure holds for many binary mixtures: pi = xip

0
i = yip. Here is xi the

fraction of the ith component in liquid phase and yi the fraction of the ith component in gas phase.

A solution of one component in another gives rise to an increase in the boiling point ∆Tk and a
decrease of the freezing point. ∆Ts. For x2 ≪ 1 holds:

∆Tk =
RT 2

k

rβα
x2 , ∆Ts = −RT

2
s

rγβ
x2

with rβα the evaporation heat and rγβ < 0 the melting heat. For the osmotic pressure Π of a solution
holds: ΠV 0

ml = x2RT .

8.11 Conditions for equilibrium

When a system evolves towards equilibrium the only changes that are possible are those for which
holds: (dS)U,V ≥ 0 or (dU)S,V ≤ 0 or (dH)S,p ≤ 0 or (dF )T,V ≤ 0 or (dG)T,p ≤ 0. In equilibrium

holds for each component: µα
i = µβ

i = µγ
i .
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42 Equations in Physics by ir. J.C.A. Wevers

Here, ν = η/̺ is the kinematic viscosity, c is the speed of sound and L is a characteristic length of
the system. α follows from the equation for heat transport κ∂yT = α∆T and a = κ/̺c is the thermal
diffusion coefficient.

These numbers can be interpreted as follows:

• Re: (stationary inertial forces)/(viscous forces)

• Sr: (instationary inertial forces)/(stationary inertial forces)

• Fr: (stationary inertial forces)/(gravity)

• Fo: (heat conductance)/(instationary change in enthalpy)

• Pe: (convective heat transport)/(heat conductance)

• Ec: (viscous dissipation)/(convective heat transport)

• Pr and Nu are related to specific materials.

Now, the dimensionless Navier-Stokes equation becomes, with x′ = x/L, ~v ′ = ~v/V , grad′ = Lgrad,
∇′2 = L2∇2 and t′ = tω:

Sr
∂~v ′

∂t′
+ (~v ′ · ∇′)~v ′ = −grad′p+

~g

Fr
+
∇′2~v ′

Re

9.5 Tube flows

For tube flows holds: they are laminar if Re< 2300 with as dimension of length the diameter of the
tube, and turbulent if Re is larger. For an incompressible laminar flow through a straight, circular
tube holds for the velocity profile:

v(r) = − 1

4η

dp

dx
(R2 − r2)

For the volume flow holds: ΦV =

R∫

0

v(r)2πrdr = − π

8η

dp

dx
R4

The entrance length Le is given by:

1. 500 < ReD < 2300: Le/2R = 0, 056ReD

2. Re > 2300: Le/2R ≈ 50

For gas transport at low pressures (Knudsen-gas) holds: ΦV =
4R3α

√
π

3

dp

dx

For flows at a small Re holds: ∇p = η∇2~v and div~v = 0. For the total force on a sphere with radius
R in a flow then holds: F = 6πηRv. For large Re holds for the force on a surface A: F = 1

2CWA̺v2.

9.6 Potential theory

The circulation Γ is defined as: Γ =

∮

(~v · ~et)ds =

∫∫

(rot~v) · ~nd2A =

∫∫

(~ω · ~n)d2A

For non viscous media, if p = p(̺) and all forces are conservative, Kelvin’s theorem can be derived:

dΓ

dt
= 0
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50 Equations in Physics by ir. J.C.A. Wevers

1. L − S coupling: for small atoms is the electrostatic interaction dominant and the state can be
characterized by L, S, J,mJ . J ∈ {|L−S|, ..., L+S−1, L+S} and mJ ∈ {−J, ..., J−1, J}. The
spectroscopic notation for this interaction is: 2S+1LJ . 2S + 1 is the multiplicity of a multiplet.

2. j−j coupling: for larger atoms is the electrostatic interaction smaller then the Li ·si interaction
of an electron. The state is characterized by ji...jn, J,mJ where only the ji of the not completely
filled subshells are to be taken into account.

The energy difference for larger atoms when placed in a magnetic field is: ∆E = gµBmJB where
g is the Landé factor. For a transition between two singlet states the line splits in 3 parts, for
∆mJ = −1, 0 + 1. This results in the normal Zeeman effect. At higher S the line splits up in more
parts: the anomalous Zeeman effect.

Interaction with the spin of the nucleus gives the hyperfine structure.

10.12.4 Selection rules

For the dipole transition matrix elements follows: p0 ∼ |〈l2m2| ~E · ~r |l1m1〉|. Conservation of angular
momentum demands that for the transiting electron holds that ∆l = ±1.

For an atom where L − S coupling is dominant further holds: ∆S = 0 (but not strict), ∆L = 0,±1,
∆J = 0,±1 except for J = 0 → J = 0 transitions, ∆mJ = 0,±1, but ∆mJ = 0 is forbidden if
∆J = 0.

For an atom where j − j coupling is dominant further holds: for the jumping electron holds, except
∆l = ±1, also: ∆j = 0,±1, and for all other electrons: ∆j = 0. For the total atom holds: ∆J = 0,±1
but no J = 0→ J = 0 transitions and ∆mJ = 0,±1, but ∆mJ = 0 is forbidden if ∆J = 0.

10.13 Interaction with electromagnetic fields

The Hamiltonian of an electron in an electromagnetic field is given by:

H =
1

2µ
(~p+ e ~A)2 − eV = − h̄

2

2µ
∇2 +

e

2µ
~B · ~L+

e2

2µ
A2 − eV

where µ is the reduced mass of the system. The term ∼ A2 can usually be neglected, except for very
strong fields or macroscopic motions. For ~B = B~ez it is given by e2B2(x2 + y2)/8µ.

When a gauge transformation ~A′ = ~A − ∇f , V ′ = V + ∂f/∂t is applied on the potentials the
wavefunction is also transformed according to ψ′ = ψeiqef/h̄ with qe the charge of the particle.
Because f = f(x, t), this is called a local gauge transformation, in contrast with a global gauge
transform which can always be applied.

10.14 Perturbation theory

10.14.1 Time-independent perturbation theory

To solve the equation (H0 + λH1)ψn = Enψn one has to find the eigenfunctions of H = H0 + λH1.
Suppose that φn is a complete set eigenfunctions is of the nun-perturbed Hamiltonian H0: H0φn =
E0

nφn. Because φn is a complete set holds:

ψn = N(λ)






φn +

∑

k 6=n

cnk(λ)φk







When cnk and En are being developed to λ: cnk = λc
(1)
nk + λ2c

(2)
nk + · · ·

En = E0
n + λE

(1)
n + λ2E

(2)
n + · · ·
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Chapter 11: Plasma physics 55

The resistivity η = E/J of a plasma is given by:

η =
nee

2

meνei
=

e2
√
me ln(ΛC)

6π
√

3ε20(kTe)3/2

The diffusion coefficient D is defined via the flux Γ by ~Γ = n~vdiff = −D∇n. The equation of
continuity is ∂tn+∇(nvdiff) = 0⇒ ∂tn = D∇2n. One finds that D = 1

3λvv. A rough estimate gives
τD = Lp/D = L2

pτc/λ
2
v. For magnetized plasma’s λv must be replaced with the cyclotron radius. In

electrical fields also holds ~J = neµ~E = e(neµe +niµi) ~E with µ = e/mνc the mobility of the particles.
The Einstein ratio is:

D

µ
=
kT

e

Because a plasma is electrical neutral electrons and ions are strongly coupled and they don’t diffuse
independent. The coefficient of ambipolar diffusion Damb is defined by ~Γ = ~Γi = ~Γe = −Damb∇ne,i.
From this follows that

Damb =
kTe/e− kTi/e

1/µe − 1/µi
≈ kTeµi

e

In an external magnetic field B0 particles will move in spiral orbits with cyclotron radius ρ = mv/eB0

and with cyclotron frequency Ω = B0e/m. The spiralized orbit is disturbed by collisions. A plasma
is called magnetized if λv > ρe,i. So the electrons are magnetized if

ρe

λee
=

√
mee

3ne ln(ΛC)

6π
√

3ε20(kTe)3/2B0

< 1

Magnetization of only the electrons is sufficient to confine the plasma reasonable because they are
coupled to the ions by charge neutrality. In case of magnetic confinement holds: ∇p = ~J × ~B.
Combined with the two stationary Maxwell equations for the B-field these form the ideal magneto-
hydrodynamic equations. For a uniform B-field holds: p = nkT = B2/2µ0.

If both magnetic and electric fields are present electrons and ions will move in the same direction.
If ~E = Er~er + Ez~ez and ~B = Bz~ez the ~E × ~B drift results in a velocity ~u = ( ~E × ~B)/B2 and the

velocity in the r, ϕ plane is ṙ(r, ϕ, t) = ~u+ ~̇ρ(t).

11.3 Elastic collisions

11.3.1 General

The scattering angle of a particle in interaction with
another particle, as shown in the figure at the right is:

χ = π − 2b

∞∫

ra

dr

r2

√

1− b2

r2
− W (r)

E0

Particles with an impact parameter between b and b +
db, going through a ring with dσ = 2πbdb leave the
scattering area at a solid angle dΩ = 2π sin(χ)dχ. The
differential cross section is then defined as:

I(Ω) =

∣
∣
∣
∣

dσ

dΩ

∣
∣
∣
∣
=

b

sin(χ)

∂b

∂χ

6?

@@IR

χ

M

b

b

ra
ϕ

For a potential energy W (r) = kr−n follows: I(Ω, v) ∼ v−4/n.

For low energies, O(1 eV), σ has a Ramsauer minimum. It arises from the interference of matter
waves behind the object. I(Ω) for angles 0 < χ < λ/4 is larger than the classical value.
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56 Equations in Physics by ir. J.C.A. Wevers

11.3.2 The Coulomb interaction

For the Coulomb interaction holds: 2b0 = q1q2/2πε0mv
2
0 , so W (r) = 2b0/r. This gives b = b0 cot(1

2χ)
and

I(Ω =
b

sin(χ)

∂b

∂χ
=

b20
4 sin2(1

2χ)

Because the influence of a particle vanishes at r = λD holds: σ = π(λ2
D − b20). Because dp = d(mv) =

mv0(1 − cosχ) a cross section related to momentum transfer σm is given by:

σm =

∫

(1 − cosχ)I(Ω)dΩ = 4πb20 ln

(
1

sin(1
2χmin)

)

= 4πb20 ln

(
λD

b0

)

:= 4πb20 ln(ΛC) ∼ ln(v4)

v4

where ln(ΛC) is the Coulomb-logarithm. For this quantity holds: ΛC = λD/b0 = 9n(λD).

11.3.3 The induced dipole interaction

The induced dipole interaction, with ~p = α~E, gives a potential V and an energy W in a dipole field
given by:

V (r) =
~p · ~er

4πε0r2
, W (r) = − |e|p

8πε0r2
= − αe2

2(4πε0)2r4

with ba = 4

√

2e2α

(4πε0)2
1
2mv

2
0

holds: χ = π − 2b

∞∫

ra

dr

r2

√

1− b2

r2
+

b4a
4r4

If b ≥ ba the charge would hit the atom. Repulsing nuclear forces prevent this to happen. If the
scattering angle is many times 2π it is called capture. The cross section for capture σorb = πb2a is
called the Langevin limit, and is a lowest estimate for the total cross section.

11.3.4 The center of mass system

If collisions of two particles with masses m1 and m2 who scatter in the center of mass system under
an angle χ are compared with the scattering under an angle θ in the laboratory system holds:

tan(θ) =
m2 sin(χ)

m1 +m2 cos(χ)

The energy loss ∆E of the incoming particle is given by:

∆E

E
=

1
2m2v

2
2

1
2m1v2

1

=
2m1m2

(m1 +m2)2
(1− cos(χ))

11.3.5 Scattering of light at free electrons

Scattering of light at free electrons is called Thomson scattering. The scattering is free of collective
effects if kλD ≪ 1. The cross section σ = 6, 65 · 10−29m2 and

∆f

f
=

2v

c
sin(1

2χ)

This gives for the scattered energy Escat = Nλ4
0/(λ

2 − λ2
0)

2. If relativistic effects become important,
this limit of Compton scattering (which is given by λ′ − λ = λC(1− cosχ) with λC = h/mc) can not
be used any more.
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Chapter 11: Plasma physics 57

11.4 Thermodynamic equilibrium and reversibility

For a plasma in equilibrium holds Planck’s radiation law and the Maxwellian velocity distribution:

ρ(ν, T )dν =
8πhν3

c3
1

exp(hν/kT )− 1
dν , N(E, T )dE =

2πn

(πkT )3/2

√
E exp

(

− E

kT

)

dE

“Detailed balancing” means that the number of reactions in one direction equals the number of
reactions in the opposite direction because both processes have equal probability if one corrects for
the used phase space. For the reaction

∑

forward

Xforward ←→
∑

back

Xback

holds in a plasma in equilibrium microscopic reversibility:

∏

forward

η̂forward =
∏

back

η̂back

If the velocity distribution is Maxwellian, this gives:

η̂x =
nx

gx

h3

(2πmxkT )3/2
e−Ekin/kT

where g is the statistical weight of the state and n/g := η. For electrons holds g = 2, for excited
states usually holds g = 2j + 1 = 2n2.

With this one finds for the Boltzmann balance: Xp + e− ←→ X1 + e− + (E1p):

np

n1
=
gp

g1
exp

(
Ep − E1

kTe

)

And for the Saha balance: Xp + e− + (Epi) ←→ X+
1 + 2e−:

nS
p

gp
=
n+

1

g+
1

ne

ge

h3

(2πmekTe)3/2
exp

(
Epi

kTe

)

Because the number of particles on the left-hand side and right-hand side of the equation is different,
a factor g/Ve remains. This factor causes the Saha-jump.

From microscopic reversibility one can derive that for the rate coefficients K(p, q, T ) := 〈σv〉pq holds:

K(q, p, T ) =
gp

gq
K(p, q, T ) exp

(
∆Epq

kT

)

11.5 Inelastic collisions

11.5.1 Types of collisions

The kinetic energy can be split in a part of and a part in the center of mass system. The energy in

the center of mass system is available for reactions. This energy is given by

E =
m1m2(v1 − v2)2

2(m1 +m2)

Some types of inelastic collisions important for plasma physics are:

1. Excitation: Ap + e− ←→ Aq + e−

2. Decay: Aq ←→ Ap + hf
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Chapter 12: Solid state physics 65

12.4 Magnetic field in the solid state

12.4.1 Dielectrics

The quantummechanical origin of diamagnetism is the Larmorprecession of the spin of the electron.
Starting with a circular electron orbit in an atom with two electrons, there is a Coulomb force Fc and
a magnetic force on each electron. If the magnetic part of the force is not strong enough to significant
deform the orbit holds:

ω2 =
Fc(r)

mr
± eB

m
ω = ω2

0 ±
eB

m
(ω0 + δ)⇒ ω =

√
(

ω0 ±
eB

2m

)2

+ · · · ≈ ω0 ±
eB

2m
= ω0 ± ωL

Here, ωL is the Larmor frequency. One electron is accelerated, the other decelerated. So there
is a net circular current which results in a magnetic moment ~µ. The circular current is given by
I = −ZeωL/2π, and 〈µ〉 = IA = Iπ

〈
ρ2
〉

= 2
3Iπ

〈
r2
〉
. If N is the number of atoms in the crystal

follows for the susceptibility, with ~M = ~µN :

χ =
µ0M

B
= −µ0NZe

2

6m

〈
r2
〉

12.4.2 Paramagnetism

Starting with the splitting of energy levels in a weak magnetic field: ∆Um − ~µ · ~B = mJgµBB,
and with a distribution fm ∼ exp(−∆Um/kT ), one finds for the average magnetic moment 〈µ〉 =
∑
fmµ/

∑
fm. After linearization, and because

∑
mJ = 0,

∑
J = 2J + 1 and

∑
m2

J = 2
3J(J +

1)(J + 1
2 ) it follows that:

χp =
µ0M

B
=
µ0N 〈µ〉

B
=
µ0J(J + 1)g2µ2

BN

3kT

This is the Curie law, χp ∼ 1/T .

12.4.3 Ferromagnetism

A ferromagnet behaves like a paramagnet above a critical temperature Tc. To describe ferromagnetism
a field BE parallel with M is postulated: ~BE = λµ0

~M . The treatment is further analogous with
paramagnetism:

µ0M = χp(Ba +BE) = χp(Ba + λµ0M) = µ0

(

1− λC
T

)

M

From this follows for a ferromagnet: χF =
µ0M

Ba
=

C

T − Tc
this is Weiss-Curie’s law.

If BE is estimated this way it results in values of about 1000 T. This is clearly unrealistic and suggests
an other mechanism. A quantummechanical approach from Heisenberg postulates an interaction
between two neighbor atoms: U = −2J ~Si · ~Sj ≡ −~µ · ~BE . J is an overlap integral given by:
J = 3kTc/2zS(S + 1), with z the number of neighbors. A distinction between 2 cases can now
be made:

1. J > 0: Si and Sj become parallel: the material is a ferromagnet.

2. J < 0: Si and Sj become antiparallel: the material is an antiferromagnet.

Heisenberg’s theory predicts quantized spin waves: magnons. Starting with a model with only nearest
neighbor interaction one can write:

U = −2J ~Sp · (~Sp−1 + ~Sp+1) ≈ ~µp · ~Bp with ~Bp =
−2J

gµB
(~Sp−1 + ~Sp+1)
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Chapter 13

Theory of groups

13.1 Introduction

13.1.1 Definition of a group

G is a group for the operation • if:

1. ∀A,B∈G ⇒ A •B ∈ G: G is closed.

2. ∀A,B,C∈G ⇒ (A •B) • C = A • (B • C): G the associative law.

3. ∃E∈G so that ∀A∈GA • E = E •A = A: G has a unit element.

4. ∀A∈G∃A−1∈G z.d.d. A •A−1 = E: Each element in G has an inverse.

If also holds:
5. ∀A,B∈G ⇒ A •B = B •A the group is called Abelian or commutative.

13.1.2 The Cayley table

Each element arises only once in each row and column of the Cayley or multiplication table: because
EAi = A−1

k (AkAi) = Ai each Ai appears once. There are h positions in each row and column when
there are h elements in the group so each elements appears only once.

13.1.3 Conjugated elements, subgroups and classes

B is conjugate with A if ∃X∈G such that B = XAX−1. Then A is also conjugate with B because
B = (X−1)A(X−1)−1.
If B and C are conjugate with A, B is also conjugate with C.

A subgroup is a subset of G which is also a group for the same operation.

A conjugacy class is the maximum collection of conjugated elements. Each group can be split up in
conjugacy classes. Some theorems:

• All classes are completely disjoint.

• E is a class itself: for each other element in this class would hold: A = XEX−1 = E.

• E is the only class which is also a subgroup because all other classes have no unit element.

• In an Abelian group each element is a separate class.

The physical interpretation of classes: elements of a group are usually symmetry operations who map
a symmetrical object on itself. Elements of one class are then the same kind of operations. The
opposite need not to be true.
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80 Equations in Physics by ir. J.C.A. Wevers

as a linear combination of the 3 Pauli-matrices σi. So these matrices are a choice for the operators
of SU(2). One can write: SU(2)={exp(− 1

2 i~σ · ~Θ)}.
Abstractly, one can consider an isomorphic group where only the commutation rules are considered
known about the operators Ti: [T1, T2] = iT3, etc.

In elementary particle physics the Ti can be interpreted e.g. as the isospin operators. Elementary
particles can be classified in isospin-multiplets, this are the irreducible representations of SU(2). The
classification is:

1. The isospin-singlet ≡ the identical representation: e−i~T ·~Θ = 1⇒ Ti = 0

2. The isospin-doublet ≡ the faithful representation of SU(2) on 2× 2 matrices.

The group SU(3) has 8 free parameters. (The group SU(N) has N2 − 1 free parameters). The
Hermitian, traceless operators are 3 SU(2)-subgroups in the ~e1~e2, ~e1~e3 and the ~e2~e3 plane. This gives
9 matrices, who are not all 9 linear independent. By taking a linear combination one gets 8 matrices.

In the Lagrange density for the color force one has to substitute
∂

∂x
→ D

Dx
:=

∂

∂x
−

8∑

i=1

TiA
i
x

The terms of 3rd and 4th power in A show that the color field interacts with itself.
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Chapter 14

Nuclear physics

14.1 Nuclear forces

The mass of a nucleus is given by:

Mnucl = Zmp +Nmn − Ebind/c
2

The binding energy per nucleon is given
in the figure at the right. The top is at
56
26Fe, the most stable nucleus. With the
constants

a1 = 15,760 MeV
a2 = 17,810 MeV
a3 = 0,711 MeV
a4 = 23,702 MeV
a5 = 34,000 MeV 0

1

2

3

4

5

6

7

8

9

(MeV)
E

↑

0 40 80 120 160 200 240
M →

is in the droplet or collective model of the nucleus the binding energy Ebind given by:

Ebind

c2
= a1A− a2A

2/3 − a3
Z(Z − 1)

A1/3
− a4

(N − Z)2

A
+ ǫa5A

−3/4

These terms arise from:

1. a1: Binding energy of the strong nuclear force, approximately ∼ A.

2. a2: Surface correction: the nucleons near the surface are less bound.

3. a3: Coulomb repulsion between the protons.

4. a4: Asymmetry term: a surplus of protons or neutrons has a lower binding energy.

5. a5: Pair off effect: nuclei with an even number of protons or neutrons are more stable because
groups of two protons or neutrons have a lower energy. The following holds:

Z even, N even: ǫ = +1, Z odd, N odd: ǫ = −1.
Z even, N odd: ǫ = 0, Z odd, N even: ǫ = 0.

The Yukawa potential can be derived if the nuclear force can, in first approximation, be considered
an exchange of virtual pions:

U(r) = −W0r0
r

exp

(

− r

r0

)

With ∆E ·∆t ≈ h̄, r0 = c∆t and Eγ = m0c
2 holds: r0 = h̄/m0c.

In the shell model of the nucleus one assumes that a nucleon moves in an average field of other
nucleons. Further, there is a contribution of the spin-orbit coupling ∼ ~L · ~S: ∆Vls = 1

2 (2l + 1)h̄ω.
So each level (n, l) niveau is split in two, with j = l ± 1

2 , where the state with j = l + 1
2 has the

lowest energy. This is just the opposite for electrons, which is an indication that the L−S interaction
is not electromagnetical. The energy of a 3-dimensional harmonic oscillator is E = (N + 3

2 )h̄ω.
N = nx + ny + nz = 2(n − 1) + l where n ≥ 1 is the main oscillator number. Because −l ≤ m ≤ l
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Chapter 15: Quantum field theory & Particle physics 89

• Expand all fields to creation and annihilation operators,

• Keep all terms who have no annihilation operators, or in which they are at the right of the
creation operators,

• In all other terms interchange the factors so that the annihilation operators go to the right. By
an interchange of two fermion operators add a − sign, by interchange of two boson operators
not. Assume hereby that all commutators are 0.

15.8 Quantization of the electromagnetic field

Starting with the Lagrange density L = − 1
2

∂Aν

∂xµ

∂Aν

∂xµ

follows for the field operators A(x):

A(x) =
1√
V

∑

~k

1√
2ωk

4∑

m=1

(

am(~k)ǫm(~k)eikx + a†(~k)ǫm(~k)∗e−ikx
)

The operators obey [am(~k), a†m′(~k)] = δmm′δkk′ . All other commutators are 0. m gives the polarization
direction of the photon: m = 1, 2 gives transversal polarized, m = 3 longitudinal polarized and m = 4
timelike polarized photons. Further holds:

[Aµ(x), Aν(x′)] = iδµνD(x − x′) with D(y) = ∆(y)|m=0

In spite of the fact that A4 = iV is imaginary in the classical case, A4 is still defined to be hermitian
because otherwise the sign of the energy becomes incorrect. By changing the definition of the inner
product in configuration space the expectation values for A1,2,3(x) ∈ IR and for A4(x) imaginary.

If the potentials satisfy the Lorentz gauge condition ∂µAµ = 0 the E and B operators derived
from these potentials will satisfy the Maxwell equations. However, this gives problems with the
commutation rules. There is now demanded that only those states are permitted for which holds

∂A+
µ

∂xµ
|Φ〉 = 0

This results in:

〈
∂Aµ

∂xµ

〉

= 0.

From this follows that (a3(~k) − a4(~k))|Φ〉 = 0. With a local gauge transformation one obtains

N3(~k) = 0 and N4(~k) = 0. However, this only applies for free EM-fields: in intermediary states in
interactions there can exist longitudinal and timelike photons. These photons are also responsible for
the stationary Coulomb potential.

15.9 Interacting fields and the S-matrix

The S(scattering)-matrix gives a relation between the initial and final states for an interaction:
|Φ(∞)〉 = S|Φ(−∞)〉. If the Schrödinger equation is integrated:

|Φ(t)〉 = |Φ(−∞)〉 − i
t∫

−∞

Hint(t1)|Φ(t1)〉dt1

and perturbation theory is applied one finds that:

S =
∞∑

n=0

(−i)n

n!

∫

· · ·
∫

T {Hint(x1) · · ·Hint(xn)} d4x1 · · · d4xn ≡
∞∑

n=0

S(n)

Preview from Notesale.co.uk

Page 96 of 105



90 Equations in Physics by ir. J.C.A. Wevers

Here, the T -operator means a time-ordened product: the terms in such a product must be oredned in
increasing time order from the right to the left so that the earliest terms work first. The S-matrix is
then given by: Sij = 〈Φi|S|Φj〉 = 〈Φi|Φ(∞)〉.
The interaction Hamilton density for the interaction between the electromagnetic and the electron-
positron field is: Hint(x) = −Jµ(x)Aµ(x) = ieN(ψγµψAµ)

When this is expanded as: Hint = ieN
(

(ψ+ + ψ−)γµ(ψ+ + ψ−)(A+
µ +A−

µ )
)

eight terms appear. Each term corresponds with a possible process. The term ieψ+γµψ
+A−

µ working

on |Φ〉 gives transitions where A−
µ creates a photon, ψ+ annihilates an electron and ψ+ annihilates a

positron. Only terms with the correct number of particles in the initial and final state contribute to
a matrixelement 〈Φi|S|Φj〉. Further the factors in Hint can create and thereafter annihilate particles:
the virtual particles.

The expressions for S(n) contain time-ordened products of normal products. This can be written
as a sum of normal products. The appearing operators describe the minimal changes necessary to
change the initial state in the final state. The effects of the virtual particles are described by the
(anti)commutator functions. Some time-ordened products are:

T {Φ(x)Φ(y)} = N {Φ(x)Φ(y)} + 1
2∆F(x− y)

T
{

ψα(x)ψβ(y)
}

= N
{

ψα(x)ψβ(y)
}

− 1
2S

F
αβ(x− y)

T {Aµ(x)Aν (y)} = N {Aµ(x)Aν (y)}+ 1
2δµνD

F
µν(x− y)

Here, SF(x) = (γµ∂µ −M)∆F(x), DF(x) = ∆F(x)|m=0 and

∆F(x) =







1

(2π)3

∫
eikx

ω~k

d3k if x0 > 0

1

(2π)3

∫
e−ikx

ω~k

d3k if x0 < 0

The term 1
2∆F(x− y) is called the contraction of Φ(x) and Φ(y), and is the expectation value of the

time-ordened product in the vacuum state. Wick’s theorem gives an expression for the time-ordened
product of an arbitrary number of field operators. The graphical representation of these processes
are called Feynman diagrams. In the x-representation each diagram describes a number of processes.
The contraction functions can also be written as:

∆F(x) = lim
ǫ→0

−2i

(2π)4

∫
eikx

k2 +m2 − iǫd
4k and SF(x) = lim

ǫ→0

−2i

(2π)4

∫

eipx iγµpµ −M
p2 +M2 − iǫd

4p

In the expressions for S(2) this gives rise to terms δ(p + k − p′ − k′). This means that energy and
momentum is conserved. However, virtual particles do not obey the relation between energy and
momentum.

15.10 Divergences and renormalization

It turns out that higher order contribute infinitely much because only the sum p + k of the four-
momentum of the virtual particles is fixed. An integration over one of both becomes ∞. In the
x-representation this can be understood because the product of two functions containing δ-like singu-
larities is not well defined. This is solved by discounting all divergent diagrams in a renormalization
of e and M . It is assumed that an electron, if there would not be an electromagnetical field, would
have a mass M0 and a charge e0 unequal to the observed mass M and charge e. In the Hamilton and
Lagrange density of the free electron-positron field appears M0. So this gives, with M = M0 + ∆M :

Le−p(x) = −ψ(x)(γµ∂µ +M0)ψ(x) = −ψ(x)(γµ∂µ +M)ψ(x) + ∆Mψ(x)ψ(x)

and Hint = ieN(ψγµψAµ)− i∆eN(ψγµψAµ).
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98 Equations in Physics by ir. J.C.A. Wevers

where µ is the average molecular mass, usually well approximated by:

µ =
̺

nmH
=

1

2X + 3
4Y + 1

2Z

where X is the mass fraction of H is, Y the mass fraction of He and Z the mass fraction of the other
elements. Further holds:

κ(r) = f(̺(r), T (r), composition) and ε(r) = g(̺(r), T (r), composition)

Convection will occur when the star meets the Schwartzschild criterium:
(
dT

dr

)

conv

<

(
dT

dr

)

stral

Otherwise the energy transfer shall be by radiation. For stars in quasi-hydrostatic equilibrium hold
the approximations r = 1

2R, M(r) = 1
2M , dM/dr = M/R, κ ∼ ̺ and ε ∼ ̺T µ (this last assumption

is only valid for stars on the main sequence). For pp-chains holds µ ≈ 5 and for the CNO chaines
holds µ = 12 tot 18. It can be derived that L ∼ M3: the mass-brightness relation. Further holds:
L ∼ R4 ∼ T 8

eff . This results in the equation of the main sequence in the Hertzsprung-Russel diagram:

10 log(L) = 8 ·10 log(Teff) + constant

16.5 Energy production in stars

The net reaction from which most stars gain their energy is: 41H→4 He + 2e+ + 2νe + γ.
This reaction produces 26,72 MeV. Two reaction chains are responsible for this reaction. The slowest,
speed-limiting reaction is shown in boldface. The energy between brackets is the energy cried away
by the neutrino.

1. The proton-proton chain can be divided in two subchains:
1H + p+

→
2 D + e+ + νe, and then 2D + p→3 He + γ.

I. pp1: 3He +3 He→ 2p+ +4 He. There is 26,21 + (0,51) MeV released.

II. pp2: 3He + α→7 Be + γ

i. 7Be + e− → 7Li + ν, dan 7Li + p+ → 24He + γ. 25,92 + (0,80) MeV.

ii. 7Be + p+ → 8B + γ, dan 8B + e+ → 24He + ν. 19,5 + (7,2) MeV.

Both 7Be chains become more important with raising T .

2. The CNO cycle. The first chain releases 25,03 + (1,69) MeV, the second 24,74 + (1,98) MeV.
The reactions are shown below.

−→ ց
ր → 15N + p+ → α+12 C 15N + p+ → 16O + γ

↓ ↓
15O + e+ → 15N + ν 12C + p+ →13 N + γ 16O + p+ → 17F + γ

↑ ↓ ↓
14N + p+

→
15O + γ 13N→ 13C + e+ + ν 17F→ 17O + e+ + ν

↓ ↓
տ ← 13C + p+ →14 N + γ 17O + p+ → α+14 N

←− ւ
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