Joint PDF of two continuous Random Variables: $f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

Marginal pdf:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y') dy$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y') dy'$$
 and $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x', y) dx'$

Properties:

Let
$$f_{X,Y}(x,y) = \begin{cases} 1, & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \\ 0, & elsewhere \end{cases}$$

1. If x<0 or y<0, then CDF $F_{X,Y}(x,y)=0$

2. If (x, y) is inside the unit interval,

elsewhere
$$F_{X,Y}(x,y) = 0$$
 or y<0, then CDF $F_{X,Y}(x,y) = 0$ or is inside the unit interval,
$$F_{X,Y}(x,y) = \int\limits_0^x \int\limits_0^1 1 dx' dy' = x$$

$$F_{X,Y}(x,y) = \int\limits_0^x \int\limits_0^1 1 dx' dy' = x$$
 5. Finally if x>1 and y>1,
$$F_{X,Y}(x,y) = \int\limits_0^1 \int\limits_0^1 1 dx' dy' = 1$$

$$F_{X,Y}(x,y) = \int\limits_0^1 \int\limits_0^1 1 dx' dy' = 1$$

$$F_{X,Y}(x,y) = \int\limits_0^1 \int\limits_0^1 1 dx' dy' = 1$$

$$F_{X,Y}(x,y) = \int\limits_0^1 \int\limits_0^1 1 dx' dy' = 1$$

3. Similarly, If $0 \le y \le 1$ and x>1, $F_{X,Y}(x,y) = y$

4. If
$$0 \le x \le 1$$
 and y>1,

Independence of two variables:

if X and Y are independent discrete random variables, then the joint pmf is equal to the product of the marginal pmf's.

$$p_{X,Y}(x_j, y_k) = p_X(x_j)p_Y(y_k),$$

for all x_i and y_k

$$F_{X,Y}(x,y) = F_X(x)F_Y(y),$$

for all x and y

$$f_{X,Y}(x,y) = f_X(x)f_Y(y),$$

for all x and v

Expected Value of a Function of Two Random Variables:

$$E[Z] = \begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X,Y}(x, y) dx dy, \\ \sum_{i} \sum_{n} g(x_{i}, y_{n}) p_{X,Y}(x_{i}, y_{n}), \end{cases}$$

Joint moment of X and Y:

The first continuous in two kandom variables:
$$E[Z] = \begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy, & \text{X, Y jointly continuous} \\ \sum_{i} \sum_{n} g(x_{i},y_{n}) p_{X,Y}(x_{i},y_{n}), & \text{X, Y discrete} \end{cases}$$
 and Y:
$$E[X^{j}Y^{k}] = \begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{j} y^{k} f_{X,Y}(x_{i},y_{n}), & \text{X, Y jointly continuous} \\ \sum_{i} \sum_{n} (j, i) p_{X,Y}(x_{i},y_{n}), & \text{X, Y discrete} \end{cases}$$
 E[XY]=0, then we say that X and Y are orthogonal.

Pairs of independent random variables have covariance zero.

Correlation coefficient of X and Y:

$$ho_{X,Y}=rac{COV(X,Y)}{\sigma_X\sigma_Y}$$
 , where $\sigma_X=\sqrt{VAR(X)}$ and $\sigma_Y=\sqrt{VAR(Y)}$ X and Y are said to be uncorrelated if $ho_{X,Y}=0$

Conditional Probability:

$$p_Y(y|x) = \frac{p_{X,Y}(x,y)}{p_X(x)}$$

$$F_Y(y|x_k) = \frac{P[Y \le y, X = x_k]}{P[X = x_k]}$$

$$f(y|x_k) = \frac{d}{dy} F_Y(y|x_k)$$

Conditional Expectation:

$$E[Y|x] = \int_{-\infty}^{\infty} y f_Y(y|x) dy$$

$$E[Y|x_k] = \sum_{y_j} y_j p_Y(y_j|x)$$

Central Limit Theorem

Let S_n be the sum of n iid random variables with finite mean $E[X] = \mu$ and finite variance σ^2 and let Z_n be the zeromean, unit-variance random variable defined by

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

