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find nonlinear effects in the actuator or feedback transducer, or even both, 
whereas the controlled element and loop compensation might well be linear. 

To permit reference to certain classes of separable nonlinear elements, it is 
appropriate to classify them according to type in some sense. The broadest 
distinction to be made is between explicit and implicit nonlinearities. In the 
former case, the nonlinearity output is explicitly determined in terms of the 
required input variables, whereas in the latter case the output is defined only 
in an implicit manner, as through the solution of an algebraic or differential 
equation. Among the explicit nonlinearities, the next division is between 
static and dynamic nonlinearities. In the former case the nonlinearity output 
depends only on the input function, whereas in the latter, the output also 
depends on some derivatives of the input function. Among the static non- 
linearities, a further distinction is drawn between single-valued and multiple-
valued nonlinearities. In the case of a static, single-valued nonlinearity, the 
output is uniquely given in terms of the current value of the input, whereas 
more than one output may be possible for any given value of the input in the 
case of a static multiple-valued nonlinearity. The choice among the multiple 
values is made on the basis of the previous history of the input; thus such a 
nonlinearity is said to possess memory. One can imagine dynamic multiple- 
valued nonlinearities as well, but we shall not have occasion to refer to any 
such in this book. These are the major distinctions among nonlinearities 
from the point of view of the theory to be developed here. Other charac- 
teristics, such as continuous vs. discontinuous, are of little consequence here, 
but can be of supreme importance in other contexts. 

An example of a static, single-valued, continuous, piecewise-linear non- 
linearity is the deadband gain, or threshold characteristic (Fig. 1.1-2a). It  
could represent the acceleration input-voltage output relationship of a 
pendulous accelerometer, or the input-output characteristic of an analog 
angular position transducer. It is described by 

( k ( x  - 6)  for x 2 6 

[k(x + 6)  for x < -6 

where x and y denote the nonlinearity input and output, respectively. A 
static, multiple-valued, discontinuous, piecewise-linear nonlinearity is the 
relay with deadband and hysteresis (Fig. 1.1-26). Arrows denote the direction 
in which this characteristic must be traversed in the determination of the 
output for a given input. The history of the input determines the value of 
the output in the multiple-valued regions. This characteristic is representa- 
tive of the actuator switch in a temperature control system (in which case 
only the first quadrant portion applies) or the on-off gas jets in a spacecraft 
angular orientation system. 
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reason to expect that it will fit the actual solution efficiently. For example, 
if a system actually has a solution of the form 

y( t )  = A sin wt ( I  -3-1) 

the assumed solution form 

cannot generate the solution for an interval of time comparable even with 
one period of the oscillation with a reasonable number of terms in the series. 

More rapidly convergent expansions can be made if one can solve for the 
approximate response of the system and develop the solution in a series of 
functions which fit this response efficiently. If such a solution to a nonlinear- 
system problem is to be achieved, the leading term in the expansion must be 
the solution to a simpler problem which we are able to solve, and each suc- 
ceeding term must be derivable from this in some tractable manner. If we 
confess that the only problems we are really able to solve are linear problems 
(this statement is intended to be a bit overgeneral), we must expect that the 
leading term in most useful series solutions will be the solution of a linear 
problem, and subsequent terms in the expansion will attempt to account for 
the nonlinear characteristics of the system. Such expansions can then be 
expected to converge rapidly only if the system is "slightly nonlinear," that is, 
if the system properties are describable to a good approximation as properties 
of a linear system. But this is not true of some of the simplest and most 
commonplace of nonlinear systems, such as a relay-controlled servo. Thus 
series methods, although they will continue to hold an important place in 
nonlinear-system theory, are almost certain to be restricted in applicability. 

LINEARIZATION 

The problem of studying a nonlinear system can be avoided altogether by 
simply replacing each nonlinear operation by an approximating linear opera- 
tion and studying the resulting linear system. This allows one to say a great 
deal about the performance of the approximating system, but the relation of 
this to the performance of the actual system depends on the validity of the 
linearizing approximations. Linearization of nonlinear operations ordinarily 
can be justified only for small departures of the variables from nominal 
operating values. This is pictured in Fig. 1.3-1. Any response which carries 
variables through a range which exceeds the limits of reasonable linear 
approximation cannot be described using this technique unless the system is 
repeatedly relinearized about new operating points, and the resulting solutions 
patched together. In addition, some commonplace nonlinearities, among 
them the two-level switch, have a discontinuity at the point which should be 
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system, but it will be a biased asymmetric mode. Or again, use of the single- 
sinusoid-input describing function may indicate that a system has two 
stable limit cycles, and one might expect to see either one, depending on 
initial conditions. In some cases, however, use of the bias-plus-sinusoid- 
input describing function would show that in the presence of one of the 
limit cycles the system has an unstable small-signal mode. Thus the system 
is unable to sustain that limit cycle. We conclude that the analysis is tailored 
to the evaluation of particular response characteristics. The burden of 
deciding what characteristics should be inquired into rests with the system 
designer. 

Another difficulty which the user of describing function theory must be 
alert to is the possibility of multiple solutions. Formulation of a problem 
using describing functions results in a simultaneous set of nonlinear algebraic 
relations to be solved. More than one solution may exist. These solutions 
represent different possible modes of response, some of which in some cases 
may be shown to be unstable. But the characteristics of these different 
solutions may be quite different, and the designer could be badly misled if 
he did not inquire into the possibility of other solutions. As an illustration 
of this, the gaussian-plus-sinusoid-input describing function can be used to 
determine how much random noise must be injected into a system to quench 
a limit cycle. The equations defining the behavior of the system may have a 
solution for a zero limit cycle amplitude and a certain rms value of the noise. 
However, one cannot conclude from this that the calculated rms value of 
noise will quench the limit cycle until he has assured himself that there is not 
also another solution for the same rms noise and a nonzero limit cycle 
amplitude. 

A final limitation on the use of describing function theory is the fact that 
there is no satisfactory evaluation of the accuracy of the method. Research 
into this problem on the part of quite a few workers has resulted in some 
intuitively based criteria which are rather crude and some analytically based 
procedures which are impractical to use. All we have, then, is the fact that 
a great deal of experience with describing function techniques has shown 
that they work very well in a wide variety of problems. Furthermore, in 
those cases in which the technique does not work well, it is almost always 
obvious that the linear part of the system is providing very little low-pass 
filtering of the nonlinearity output. Finally, since the design of a nonlinear 
system must be based on the use of approximate analytic techniques, and 
these techniques will be inadequate to answer all questions regarding system 
behavior, the design must be checked-preferably by computer simulation- 
before it is approved. At that point in the design process one need not con- 
cern himself with checking the accuracy of the approximate analytic tools he 
has used in arriving at the design. Rather, his object is to check the design 
itself, to assure himself of its satisfactory performance in a variety of 
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outputs is 

So the cross correlation between actual and approximate outputs is equal 
to the autocorrelation of the approximate output over the indicated range of 
T. The restrictions on the range of T for which Eqs. (1.5-14) and (1.5-15) 
hold are due to the restricted range of T ,  for which Eq. (1.5-13) is a required 
condition. 

The statistics of the approximation error can now be written. 

n 

If the input to the nonlinearity, x ( t )  = 2 x,(t) ,  has a nonzero mean value, 
i=l 

there is no prescribed way of associating this constant with the various 
components xi( t ) .  The assignment of the mean to the x i ( t )  can be made 
arbitrarily with no loss of generality. The most convenient convention to 
employ is to assign all of the mean of x ( t )  to one of the x, ( t )  which is just a 
constant, or bias, function. With this convention, all but one of the x, ( t )  
are unbiased functions; the remaining x,(t)  is a constant function equal to the 
mean of x( t ) .  Equation (1.5-16) then becomes 

where woi(r1)is the weighting function of the filter which passes the bias 
input component. This weighting function has yet to  be determined on the 
basis of minimizing the mean-squared approximation error; we shall find 
that the result also has the desirable property of reducing the mean error as 
expressed in Eq. (1.5-17) to zero. 

The mean-squared approximation error, which is minimized by the set of 
filters that satisfy the conditions of Eq. (1.5-13), is 
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The further change of variable 8" = -8' was employed in this demonstration 
of the fact that Eq. (1.5-37), and thus the imaginary part of the describing 
function for a sinusoidal input to a static single-valued nonlinearity, is 
zero. For such a nonlinearity, the describing function for a sinusoidal input 
in the presence of any other uncorrelated inputs is a real static gain, the 
proportional gain of Eq. ( 1  536). 

This gain is subject to an interesting interpretation. 

The definitions of all variables and functions used here are identical with 
those of Eq. (1.5-37). The quantity in the braces-the integral with respect 
to p,, . . . ,pa-is the expectation of the output of the nonlinearity with 0 
fixed. This expectation is itself a nonlinear function of 0 which appears 
only in the form of A sin 8. Call this new function yl(A sin 8). In terms of 
this, the describing function for a sinusoidal input component in the presence 
of any other independent input components is written 

N - /'>'(A sin 8) sin 8 dB (1.5-41)"-z 0 

But this is just an ordinary harmonic analysis of the modified nonlinearity 
y'(x). This interpretation is also true of NA for more general nonlinearities 
than static single-valued. In that case both the sine and cosine components 
of the output of the modified nonlinearity must be calculated, and this 
calculation is considerably more difficult. If the remainder includes a 
random process, the determination of the expectation of the nonlinearity 
output with 0 fixed is somewhat obscure when the present output depends 
not only on the present input, but also on the history of that input. How-
ever, if the input consists only of a bias and any number of sinusoids, the 
calculation of the modified nonlinearity is straightforward. In summary, 
then, the describing function for a sinusoidal input component may be viewed 
as the amplitude and phase relationship between an input sinusoid and the 
fundamental harmonic component of the expectation of the output of the 
nonlinearity taken with respect to all statistical parameters except 8 .  This 
definition of the gain of a nonlinearity to a sinusoid in the presence of other 
input components was employed by Vander Velde (Ref. 14), based on an 
intuitive argument. This property has since been utilized for computational 
purposes by a number of writers, among them Atherton (Ref. I), Gusev 
(Ref. 5), Popov (Ref. lo), and Somerville and Atherton (Ref. 13). 
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Random signal The last of the signal forms which we are considering is 
the gaussian process. 

x(t) = r(t) + x,(t) (1.5-42) 

r(t) is a member of a stationary ensemble, and the remainder, x,(t), is 
uncorrelated with r(t). For x,(t) = r(t), the autocorrelation function is 
simply written as 

Vii(4 = VAT) (1.5-43) 

and the corresponding form of Eq. (1.5-21) as 

The right-hand member of this equation, defining the weighting function for 
the filter which passes a gaussian input component, is the cross correlation 
between the gaussian input component and the output of the nonlinearity. 
For a general nonlinearity, the output at time zero, y(O), may depend not 
only on the current value of the input, but on certain properties of the past 
history of that input, or on certain derivatives of the input at time zero. The 
cross-correlation function in Eq. (1.5-44) is an average over all inputs to, and 
corresponding outputs from, the nonlinearity. The evaluation of this 
expectation requires the joint probability density function for all the random 
variables needed to define y(0). Needless to say, this constitutes a formi-
dable task even for dynamic nonlinearities of simple-appearing form. 

Even if one is able to evaluate 977,(~,) in some cases, a substantial chore 
remains. The solution to the integral equation will not be obvious; the 
equation must be solved in the more general sense. This solution is not 
difficult if the transform of p1,,(~,) can be taken and if the result is a rational 
function of the transform variable, or can be well approximated by a rational 
function. If so, the solution to the integral equation can be written down 
explicitly, since the equation is of the form of the Wiener-Hopf equation. 
The solution is derived in a number of books, including Refs. 4 and 7 to 9. 
If transform techniques cannot usefully be employed, the only practical 
alternative is likely to be numerical solution with computer help. The 
solution will be some general function for w,(T,). Thus the optimum 
linear filter to approximate the effect of the general nonlinearity in passing a 
gaussian input component is not a static gain, but is indeed some dynamic 
linear filter, as one would surely expect. 

Fortunately, this situation is simplified considerably in the very important 
case of a static single-valued nonlinearity. In this case the output of 
the nonlinearity depends only on the current value of the input, and the 
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