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Note:By moments we mean the moments about origin or raw moments.

The first four moments about the origin are given by

1. µ′1 = E(X)=Mean

2. µ′2 = E(X2)

3. µ′3 = E(X3)

4. µ′4 = E(X4)

Note: V ar(X) = E(X2)− [E(X)]2 = µ′2−µ′1
2=Second moment - square of the first moment.

Definition 4.2 (Moments about mean or Central moments). The rth moment of a random variable
X about the mean µ is defined as E[(X − µ)r] and is denoted by µr.

The first four moments about the mean are given by

1. µ1 = E(X − µ) = E(X)− E(µ) = µ− µ = 0

2. µ2 = E[(X − µ)2] = V ar(X)

3. µ3 = E[(X − µ)3]

4. µ4 = E[(X − µ)4]

Definition 4.3 (Moments about any point a). The rth moment of a random variable X about
any point a is defined as E[(X − a)r] and we denote it by m′r.

The first four moments about a point ‘a’ are given by

1. m′1 = E(X − a) = E(X)− a = µ− a

2. m′2 = E[(X − a)2]

3. m′3 = E[(X − a)3]

4. m′4 = E[(X − a)4]

Relation between moments about the mean and moments about any arbitrary point a

Let µr be the rth moment about mean and m′r be the rth moment about any point a. Let µ be the
mean of X .
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Since the total sales X is in thousands of units, the sales between 500 and 1500 units is the event

A which stands for
1

2
= 0.5 < X <

3

2
= 1.5 and the sales over 1000 units is the event B which

stands for X > 1. =⇒ A ∩B = 1 < X < 1.5

Now

P (A) = P (0.5 < X < 1.5) =

1.5∫
0.5

f(x)dx

=

1∫
0.5

x dx+

1.5∫
1

(2− x) dx =
3

4

P (B) = P (X > 1) =

2∫
1

f(x)dx

=

2∫
1

(2− x) dx =
1

2

P (A ∩B) = P (1 < X < 1.5) =

1.5∫
1

f(x)dx

=

1.5∫
1

(2− x) dx =
3

8

The condition for independent events: P (A) · P (B) = P (A ∩B)

Here, P (A) · P (B) =
3

4
· 1

2
=

3

8
= P (A ∩B)

∴ A and B are independent events.

Example: 11. If a random variable X has the following probability distribution, find

E(X), E(X2), V ar(X), E(2X + 1), V ar(2X + 1).
x −1 0 1 2
p(x) 0.3 0.1 0.4 0.2

Hints/Solution: Here X is a discrete RV. ∴

E(X) =
∞∑

i=−∞

xip(xi)

= (−1)× 0.3 + 0× 0.1 + 1× 0.4 + 2× 0.2

= −0.3 + 0 + 0.4 + 0.4 = 0.5
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Now E(X2) =

∞∫
−∞

x2f(x)dx

=

0∫
−∞

x2
1

5
e−

x
5 dx

= −1

5

[
(5x2 + 50x+ 250)e−

x
5

]∞
0

= 50

∴ V ar(X) = 50− [5]2 = 25

Example: 14. Find the mean and standard deviation of the distribution

f(x) =

{
kx(2− x), when 0 <≤ x ≤ 2

0, otherwise

Hints/Solution: Given that the continuous RV X whose pdf is given by

f(x) =

{
kx(2− x), when 0 <≤ x ≤ 2

0, otherwise

Since f(x) is a pdf,

we have

∞∫
−∞

f(x)dx = 1

i.e.

0∫
−∞

f(x)dx+

2∫
0

f(x)dx+

∞∫
2

f(x)dx = 1

i.e.

0∫
−∞

0 · dx+

2∫
0

kx(2− x) dx+

∞∫
2

0 · dx = 1

i.e. 0 + k

[
x2 − x3

3

]2
0

+ 0 = 1

=⇒ k =
3

4
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Hints/Solution: We know that

∞∫
−∞

f(x) dx = 1

i.e.,

∞∫
0

kx2e−x dx = 1

i.e., k

∞∫
0

e−xx3−1 dx = 1

i.e., kΓ(3) = 1

∵ Γ(n) =

∞∫
0

e−xxn−1 dx


i.e., k · 2! = 1 =⇒ k =

1

2
. [∵ Γ(n) = (n− 1)!]

Now, The rth moment is given by

µ′r = E(Xr)

=

∞∫
−∞

xrf(x) dx

=

∞∫
0

xrkx2e−x dx

= k

∞∫
0

e−xxr+3−1 dx

=
1

2
Γ(r + 3) =

1

2
(r + 2)!

Now, First Moment µ′1 =
1

2
(3)! = 3

Second Moment µ′2 =
1

2
(4)! = 12

Third Moment µ′3 =
1

2
(5)! = 60

Fourth Moment µ′4 =
1

2
(6)! = 360

Example: 20. A random variable X has the pdf f(x) =
1

2
e−

x
2 , x ≥ 0. Find the MGF(Moment

Generating Function) and hence find its mean and variance.
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Hints/Solution: The MGF of X is given by

Given µ′r = (r + 1)!2r

∴ µ′1 = 2!2

µ′2 = 3!22

µ′3 = 4!23

...

∴ MX(t) = E(etX) = 1 +
t

1!
µ′1 +

t2

2!
µ′2 +

t3

3!
µ′3 + · · ·+ tr

r!
µ′r + . . .

= 1 +
t

1!
2 +

t2

2!
3!22 +

t3

3!
4!23 + . . .

= 1 + 2(2t) + 3(2t)2 + 4(2t)3 + . . .

∴ MX(t) = (1− 2t)−2.

Now, Differentiating w.r.to t, we get

M ′
X(t) = −2(1− 2t)−3(−2)

M ′′
X(t) = 6(1− 2t)−4(−2)2

Now, First Moment=Mean= E(X) = µ′1 = M ′
X(0) = 4

Second Moment= E(X2) = µ′2 = M ′′
X(0) = 24

∴ V ar(X) = E(X2)− [E(X)]2 = 24− 16 = 8.
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Find the (i) the value of A,(ii) the Distribution Function (CDF) (iii) P (X > 5/X <
5), P (X > 5/2.5 < X < 7.5). (iv) the probability that in a day the sales is (a) more than

500 kgs (b) less than 500 kgs (c) between 250 and 750 kgs. Ans: A =
1

25

9. The cumulative distribution function (CDF) of a random variable X is given by

F (x) =

1− 4

x2
, when x > 2

0, otherwise

Find the (i) the pdf of X ,(ii) P (X > 5/X < 5), P (X > 5/2.5 < X < 7.5) (iii)
P (X < 3), P (3 < X < 5).

10. A coin is tossed until a head appears. What is the expected value of the number of tosses?.
Also find its variance.

11. The pdf of a random variable X is given by

f(x) =

{
a+ bx, when 0 ≤ x ≤ 1

0, otherwise

Find the (i) the value of a, b if the mean is 1/2,(ii) the variance of X (iii) P (X > 0.5/X <
0.5)

12. The first three moments about the origin are 5,26,78. Find the first three moments about
the value x=3. Ans: 2,5,-48

13. The first two moments about x=3 are 1 and 8. Find the mean and variance. Ans: 4,7

14. The pdf of a random variable X is given by

f(x) =

{
k(1− x), when 0 ≤ x ≤ 1

0, otherwise

Find the (i) the the value of k,(ii) the rth moment about origin (iii) mean and variance.
Ans: k = 2

15. An unbiased coin is tossed three times. If X denotes the number of heads appear, find the
MGF of X and hence find the mean and variance.

16. Find the MGF of the distribution whose pdf is f(x) = ke−x, x > 0 and hence find its
mean and variance.

17. The pdf of a random variable X is given by

f(x) =


x, when 0 ≤ x ≤ 1

2− x, when 1 < x ≤ 2

0, otherwise

For this find the MGF and prove that mean and variance cannot be find using this MGF
and then find its mean and variance using expectation.
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