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STA 2200 PROBABILITY AND STATISTICS II 

Purpose At the end of the course the student should be able to handle problems involving 

probability distributions of a discrete or a continuous random variable. 

Objectives 

By the end of this course the student should be able to;  

(1) Define the probability mass, density and distribution functions, and to use these to 

determine expectation, variance, percentiles and mode for a given distribution 

(2) Appreciate the form of the probability mass functions for the binomial, geometric, 

hypergeometic and Poisson distributions, and the probability density functions for the 

uniform, exponential gamma , beta and normal, functions, and their applications 

(3) Apply the moment generating function and transformation of variable techniques 

(4) Apply the principles of statistical inference for one sample problems.    

 

DESCRIPTION 

Random variables: discrete and continuous, probability mass, density and distribution 

functions, expectation, variance, percentiles and mode. Moments and moment generating 

function. Moment generating function and transformation Change of variable technique for 

univariate distribution. Probability distributions: hypergeometric, binomial, Poisson, uniform, 

normal, beta and gamma. Statistical inference including one sample normal and t tests. 

Pre-Requisites: STA 2100 Probability and Statistics I, SMA 2104 Mathematics for Science 

Course Text Books 

1) RV Hogg, JW McKean & AT Craig Introduction to Mathematical Statistics, 6th ed., 

Prentice Hall, 2003 ISBN 0-13-177698-3 

2) J Crawshaw & J Chambers A Concise Course in A-Level statistics, with worked examples, 

3rd ed. Stanley Thornes, 1994 ISBN 0-534- 42362-0 

 

Course Journals: 

1) Journal of Applied Statistics (J. Appl. Stat.) [0266-4763; 1360-0532] 

2) Statistics (Statistics) [0233-1888] 

 

Further Reference Text Books And Journals: 

a) HJ Larson Introduction to Probability Theory and Statistical Inference(Probability and 

Mathematical Statistics)  3rd ed., Wiley, 1982 

b) Uppal, S. M. , Odhiambo, R. O. & Humphreys, H. M. Introduction to Probability and 

Statistics. JKUAT Press, 2005 

c) I Miller & M Miller John E Freund’s Mathematical Statistics with Applications, 7th ed., 

Pearsons Education, Prentice Hall, New Jersey, 2003 ISBN: 0131246461 

d) Statistical Science (Stat. Sci.) [0883-4237] 

e) Journal of Mathematical Sciences 

f) The Annals of Applied Probability 
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3. Let X be the random variable the number of fours observed when two dice are rolled 

together once. Show that X is a discrete random variable. 

4. The pmf of a discrete random variable X is given by 6,5,4,3,2,1for)(  xkxxXP  

Find the value of the constant k,   4XP  and  6X3 P  

5. A fair coin is flip until a head appears. Let N represent the number of tosses required to 

realize a head. Find the pmf of N 

6. A discrete random variable Y has a pmf given by   .....,2,1,0for)(
4
3  ycyYP

x
 

Find the value of the constant c  and  3X P  

7. Verify that kx
kk

x
.....,2,1,0for

)1(

2
f(x) 


  can serve as a pmf of a random variable X. 

8. For each of the following determine c so that the function can serve as a pmf of a random 

variable X. 

a) 5,4,3,2,1forf(x)  xcx  

b) kxcx .....,2,1,0forf(x) 2   

c)   .....3,2,1,0forf(x)
6
1  xc

x
 

d) ....,2,1,0forfor2f(x)   xxc x  

9. A coin is loaded so that heads is three times as likely as the tails. For 3 independent 

tosses of the coin find the pmf of the total number of heads realized and the probability of 

realizing at most 2 heads.  

  

1.3   Continuous Random Variables and Probability Density Function 
A continuous random variable can assume any value in an interval on the real line or in a 

collection of intervals. The sample space is uncountable. For instance, suppose an experiment 

involves observing the arrival of cars at a certain period of time along a highway on a 

particular day. Let T denote the time that lapses before the 1st arrival, the T is a continuous 

random variable that assumes values in the interval ),0[   

Definition: A random variable X is continuous if there exists a nonnegative function f so that, for 

every interval B,   
B

BXP dx. f(x)  The function f(x) = f  is called the probability density 

function of X. 

Definition: Let X be a continuous random variable that assumes values in the interval 

),(  , The f(x) is said to be a probability density function (pdf) of X if it satisfies the 

following conditions 

0 f(x)  for all x ,    

b

bxap
a

1dx f(x)  and 





-

1dx f(x)  

The support of a continuous random variable is the smallest interval containing all values of x 

where f(x) >= 0. 

 

Remark A crucial property is that, for any real number x, we have 0 x)P(X   (implying 

there is no difference between x)P(X and x)P(X ); that is it is not possible to talk about 

the probability of the random variable assuming a particular value. Instead, we talk about the 

probability of the random variable assuming a value within a given interval. The probability 

of the random variable assuming a value within some given interval from bxax   to  is 

defined to be the area under the graph of the probability density function between 

bxax   and . 

Example 1 

Let X be a continuous random variable. Show that the function  

Preview from Notesale.co.uk

Page 4 of 52



8 
 

For a 1-1 relationship between X and Y eg ,32 Y  X  g(y) )andf(x yields exactltly the 

same probabilities only the random variable and the set of values it can assume changes. 

 

Example 1 

Give the pmf of a random variable X as 


 


elsewhere

xx

,0

3,2,1for
 f(x)

6
 find the pmf of 2 Y X  

Solution 

The only values of Y with non zero probabilities are 9=Y and 4=Y ,1=Y . Now  

     
6

12 1=X1=X1=Y  PPP                    
3
12 2=X4=X4=Y  PPP    and 

     
2
12 3=X9=X9=Y  PPP  

In some cases several values of X will give rise to the same value of Y. The procedure 

is just the same as above but it is necessary to add the several probabilities that are associated 

with each value x that provides a unique value y. 

 

Example 2 

Give the pmf of a r.v X as 













elsewhere

x
x

,0

4,3,2,1,0for
15

1

 f(x)  find the pmf of  22 Y  X  

 

Solution 

x 0 1 2 3 4 

y 4 1 0 1 4 

 

   
5
12=X0=Y  PP                    

5
2

15
4

15
23=X1=X1=Y  PPP  

     
5
2

3
1

15
14=X0=X1=Y  PPP    Therefore the pmf of Y can be written as  

 

 

\ 

Exercise 

1. Suppose the pmf of a r.v X is given by 


 


elsewhere

x

,0

6,5,4,3,2,1for
 f(x)

6
1

, Obtain the pmf of 

22 Y X  and  3 Z  X  

2. Let the pmf of a r.v X be given by 













elsewhere

x
x

,0

3,2,1,0for
18

1

 f(x)

2

, determine the pmf of 

1 Y 2  X   

3. Suppose the pmf of a r.v X is given by 


 


elsewhere

xx

,0

4,3,2,1,0for
 f(x)

10
, Obtain the pmf of 

2 Y  X  

y 0 1 4 

 y=YP  5
2  

5
2  

5
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Standard deviation 1.6833)()( 6
172

6
7

6
1122   XE  

Now 206)(126)(12)( 6
7  XEYE  

242.38812144)(12)612()( 6
172  XVarXVarYVar  

Example 3 

A continuous random variable X has a pdf given by


 


elsewhere

xx

,0

20,
 f(x)

2
1

, find the mean 

and standard of X 

Solution 

3

4

6
dx)f(E(x)

2

0

2

0

3
2

2
1 








 





x
xdxxx  and  2

8
dx)f()E(x

2

0

2

0

4
3

2
122 








 





x
xdxxx  

Standard deviation 
3

22
3

422 )(2)(   XE  

 

Exercise 

1. Suppose X has a probability mass 

function given by the table below 

x 2 3 4 5 6 

P(X=x) 0.01 0.25 0.4 0.3 0.04 

Find the mean and variance of; X 

2. Suppose X has a probability mass 

function given by the table below 

x 11 12 13 14 15 

P(X=x) 0.4 0.2 0.2 0.1 0.1 

Find the mean and variance of; X 

3. Let X be a random variable with P(X = 1) = 0.2, P(X = 2) = 0.3, and P(X = 3) = 0.5. What is the 

expected value and standard deviation of; a)X   b) 105  XY  ? 

4. A random variable W has the probability distribution shown below, 

w 0 1 2 3 

P(W=w) 2d 0.3 d 0.1 

Find the values of the constant d hence determine the mean and variance of W. Also find 

the mean and variance of 2510  XY  

5. A random variable X has the probability distribution shown below, 

x 1 2 3 4 5 

P(X=x) 7c 5c 4c 3c c 

Find the values of the constant c hence determine the mean and variance of X. 

6. The random variable Z has the probability distribution shown below, 

z 2 3 5 7 11 

P(Z=z) 6
1  3

1  4
1  x y 

If 
3
24)( ZE  , find the values of x and y hence determine the variance of Z 

7. A discrete random variable M has the probability distribution 


 


elsewhere

mm

,0

8,...,3,2,1,
 f(m) 36

, 

find the mean  and variance of M  

8. For a discrete random variable Y the probability distribution is 


 





elsewhere

y
y

,0

4,3,2,1,
 f(y) 10

5

, 

calculate )(YE and var(Y)   

9. Suppose X has a pmf given by 


 


elsewhere

xkx

,0

4,3,2,1for
 f(x) , find the value of the constant k 

hence obtain the mean  and variance of X  
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Exercise 

1. Over a very long period of time, it has been noted that on Friday’s 25% of the customers 

at the drive-in window at the bank make deposits. What is the probability that it takes 4 

customers at the drive-in window before the first one makes a deposit.  

2. It is estimated that 45% of people in Fast-Food restaurants order a diet drink with their 

lunch. Find the probability that the fourth person orders a diet drink. Also find the 

probability that the first diet drinker of th e day occurs before the 5th person. 

3. What is the probability of rolling a sum of seven in fewer than three rolls of a pair of 

dice? Hint (The random variable, X, is the number of rolls before a sum of 7.) 

4. In New York City at rush hour, the chance that a taxicab passes someone and is 

available is 15%.  a) How many cabs can you expect to pass you for you to find one that 

is free and b) what is the probability that more than 10 cabs pass you before you find 

one that is free.  

5. An urn contains N white and M black balls. Balls are randomly selected, one at a time, 

until a black ball is obtained. If we assume that each selected ball is replaced before the 

next one is drawn, what is;   

a) the probability that exactly n draws are needed? 

b) the probability that at least k draws are needed? 

c) the expected value and Variance of the number of balls drawn? 

6. In a gambling game a player tosses a coin until a head appears. He then receives $2n , 

where n is the number of tosses. 

a) What is the probability that the player receives $8.00 in one play of the game? 

b) If the player must pay $5.00 to play, what is the win/loss per game? 

7. An oil prospector will drill a succession of holes in a given area to find a productive 

well. The probability of success is 0.2.  

a) What is the probability that the 3rd hole drilled is the first to yield a productive well?  

b) If the prospector can afford to drill at most 10 well, what is the probability that he will 

fail to find a productive well?  

8. A well-travelled highway has itstraffic lights green for 82% of the time. If a person 

travelling the road goes through 8 traffic intersections, complete the chart to find a) the 

probability that the first red light occur on the nth traffic light and b) the cumulative 

probability that the person will hit the  red light on or before the nth traffic light. 

9. An oil prospector will drill a succession of holes in a given area to find a productive 

well. The probability of success is 0.2.  

a) What is the probability that the 3rd hole drilled is the first to yield a productive well?  

b) If the prospector can afford to drill at most 10 well, what is the probability that he will 

fail to find a productive well?  

 

2.1.5   The negative binomial distribution 

Suppose a Bernoulli trial is performed until the tth success is realized. Then the random 

variable “the number of trials until the tth success is realized” has a negative binomial 

distribution  

Definition: A random variable X has the negative binomial distribution, also called the Pascal 

distribution, denoted p) NB(r, ~X , if there exists an integer 1n  and a real number 

1) , (0p  such that  . . 3,. 2, 1,)1()( 1  

xr

xxr ppCxrXP  

If r=1 the negative binomial distribution reduces to a geometric distribution. 

 

2.1.6   Hyper geometric Distribution 

Hyper geometric experiments occur when the trials are not independent of each other and 

occur due to sampling without replacement hyper-geometric probabilities involve the 
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Exercise 

1. If  82,65N~X  and  63 ,85N~Y  are 2 independent r.v, Find (a)  142YXP  

(b)  166134  YXP  (c)   4 XYP   (d)   2412  XYP  

2. Each day Mr. Njoroge walks to the library bto read a newspaper. Total time spent 

walking is normally distributed with mean 15 minutes and standard deviation 2 minutes. 

Total time spent in the library is also normally distributed with mean 25 minutes and 

standard deviation  12  minutes. Find the probability that on one day;  

  a) he is away from his home for more than 45 minutes.  

  b)  he spends more time walking than in the library  
 

 

4.6   Sampling Distributions 
In many investigations the data of interest can take on many possible values and it is often of 

interest to estimate the population mean, μ. A common estimator for μ is the sample mean x . 

Consider the following set up: We observe a sample of size n from some population  and 

compute the mean 



n

i

ix
n

x
1

1
.Since the particular individuals included in our sample are 

random, we would observe a different value of x if we repeated the procedure. That is, x  is 

also a random quantity. Its value is determined partly by which people are randomly chosen 

to be in the sample. If we repeatedly drew samples of size n and calculated x , we could 

ascertain the sampling distribution of x .  

Many possible samples, many possible x ’s 

0 2 4 6 8 10

mean = 1.78

0 2 4 6 8 10

mean = 1.55

0 2 4 6 8 10

mean = 1.45

0 2 4 6 8 10

mean = 1.6

0 2 4 6 8 10

mean = 1.73

0 2 4 6 8 10

mean = 1.6

0 2 4 6 8 10

mean = 1.56

0 2 4 6 8 10

mean = 1.67

0 2 4 6 8 10

mean = 1.44

0 2 4 6 8 10

mean = 1.7

0 2 4 6 8 10

mean = 1.53

0 2 4 6 8 10

mean = 1.62

0 2 4 6 8 10

mean = 1.66

0 2 4 6 8 10

mean = 1.38

0 2 4 6 8 10

mean = 1.45

0 2 4 6 8 10

mean = 1.7

0 2 4 6 8 10

mean = 1.64

0 2 4 6 8 10

mean = 1.61

0 2 4 6 8 10

mean = 1.59

0 2 4 6 8 10

mean = 1.72

We only see one! 

We will have a better idea of how good our one estimate is if we have good knowledge of 

how x  behaves; that is, if we know the probability distribution of x . 
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The sampling distribution is simply this probability distribution defined over all possible 

samples of size n from the population of size N. In the real world problems N will be large 

(e.g. 200 million US population) and n will be also be large (e.g., 1000 people surveyed) and 

n

N c  will be astronomical number.  Then the sampling distribution can only be imagined.  We 

have chosen a simple example of N=6, n=2 so that the entire sampling distribution can be 

explicitly computed and visualized.  Now the random variable is x  , it is no longer just X.   

 

Definitions 

Central Limit Theorem:- Stats that as the sample size increases, the sampling distribution of 

the sample means will become approximately normally distributed.  

Sampling Distribution of the Sample Means:-  Distribution obtained by using the means 

computed from random samples of a specific size.  

Sampling Error :- Difference which occurs between the sample statistic and the population 

parameter due to the fact that the sample isn't a perfect representation of the population.  

Standard Error or the Mean:- The standard deviation of the sampling distribution of the 

sample means. It is equal to the standard deviation of the population divided by the square 

root of the sample size. 

 

4.6.2   The Mean and Standard Deviation of x  

What are the mean and standard deviation of x ? 

Let’s be more specific about what we mean by a sample of size n. We consider the sample to 

be a collection of n independent and identically distributed (or iid )random variables 

nXXX ,...,, 21  with common mean   and common standard deviation  . 

Thus,   
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4.6.3   The Central Limit Theorem 

Now we know that x  has mean   and standard deviation
n

 , but what is its distribution? 

If nXXX ,...,, 21  are normally distributed, then x  is also normally distributed. Thus, 

 
ni NXNX

2

,~),(~ 2   . If nXXX ,...,, 21  are not normally distributed, then the 

Central Limit Theorem tells us that x  is approximately Normal.  

In brief if nXXX ,...,, 21  are iid random variables with mean   and finite standard deviation 

 . Then for a sufficiently large n, the sampling distribution of X  is approximately Normal 

with mean   and variance
n

2 . 

 

Remarks  

 Central limit theorem involves two different distributions: the distribution of the original 

population and the distribution of the sample means 

 The formula for a z-score when working with the sample means is:  1),N(0 ~
/ n

x
z
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5.3   Approaches to Hypothesis Testing 

There are three approaches to hypothesis testing namely Classical Approach, p vale approach 

and the confidence interval approach 
 

5.3.1   The Classical Approach  

The Classical Approach to hypothesis testing is to compare a test statistic and a critical value. 

It is best used for distributions which give areas and require you to look up the critical value 

(like the Student's t distribution) rather than distributions which have you look up a test 

statistic to find an area (like the normal distribution).  

The Classical Approach also has three different decision rules, depending on whether it is a 

left tail, right tail, or two tail test.  

One problem with the Classical Approach is that if a different level of significance is desired, 

a different critical value must be read from the table.  

 

5.3.2   P-Value Approach 

The P-Value Approach, short for Probability Value, approaches hypothesis testing from a 

different manner. Instead of comparing z-scores or t-scores as in the classical approach, 

you're comparing probabilities, or areas.  

The level of significance (alpha) is the area in the critical region. That is, the area in the tails 

to the right or left of the critical values.  

The p-value is the area to the right or left of the test statistic. If it is a two tail test, then look 

up the probability in one tail and double it.  

If the test statistic is in the critical region, then the p-value will be less than the level of 

significance. It does not matter whether it is a left tail, right tail, or two tail test. This rule 

always holds.  

Reject the null hypothesis if the p-value is less than the level of significance. 

 You will fail to reject the null hypothesis if the p-value is greater than or equal to the level of 

significance.  

The p-value approach is best suited for the normal distribution when doing calculations by 

hand. However, many statistical packages will give the p-value but not the critical value. This 

is because it is easier for a computer or calculator to find the probability than it is to find the 

critical value.  

Another benefit of the p-value is that the statistician immediately knows at what level the 

testing becomes significant. That is, a p-value of 0.06 would be rejected at an 0.10 level of 

significance, but it would fail to reject at an 0.05 level of significance. Warning: Do not 

decide on the level of significance after calculating the test statistic and finding the p-value.  

Here are a couple of statements to help you keep the level of significance the probability 

value straight.  

The Level of Significance is pre-determined before taking the sample. It does not depend on 

the sample at all. It is the area in the critical region,that is the area beyond the critical values. 

It is the probability at which we consider something unusual.  

The Probability-Value can only be found after taking the sample. It depends on the sample. It 

is the area beyond the test statistic. It is the probability of getting the results we obtained if  

the null hypothesis is true.  
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