
LECTURE 2. GEOMETRIC FOUNDATIONS 8

Now the angles α and γ form a straight line and so are supplementary,
it follows that α = 180◦−γ. Similarly, β and γ also form a straight line
and so again we have that β = 180◦−γ. So we have α = 180◦−γ = β,
which shows that the angles are congruent.

One last note on notation. Throughout the book we will tend to use capital
letters (A,B,C, . . .) to represent points and lowercase letters (a, b, c, . . .) to repre-
sent line segments or length of line segments. While it a goal to be consistent it
is not always convenient, however it should be clear from the context what we are
referring to whenever the notation varies.

2.4 Isoceles triangles

A special group of triangles are the isoceles triangles. The root iso means “same”
and isoceles triangles are triangles that have at least two sides of equal length. A
useful fact from geometry is that if two sides of the triangle have equal length then
the corresponding angles (i.e. the angles opposite the sides) are congruent. In the
picture below it means that if a = b then α = β.

b a

ba

The geometrical proof goes like this. Pick up and “turn over” the triangle and
put it back down on top of the old triangle keeping the vertex where the two sides
of equal length come together at the same point. The triangle that is turned over
will exactly match the original triangle and so in particular the angles (which have
now traded places) must also exactly match, i.e., they are congruent.

A similar process will show that if two angles in a triangle are congruent then
the sides opposite the two angles have the same length. Combining these two fact
means that in a triangle having equal sides is the same as having equal angles.

One special type of isoceles triangle is the equilateral triangle which has all
three of the sides of equal length. Applying the above argument twice shows that
all the angles of such a triangle are congruent.

2.5 Right triangles

In studying triangles the most important triangles will be the right triangles. Right
triangles, as the name implies, are triangles with a right angle. Triangles can be
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LECTURE 3. THE PYTHAGOREAN THEOREM 15

Solution In this triangle we are given the lengths of the “legs” (i.e. the
sides joining the right angle) and we are missing the hypotenuse, or c.
And so in particular we have that

32 + 72 = c2 or c2 = 58 or c =
√

58 ≈ 7.616

Note in the example that there are two values given for the missing side. The
value

√
58 is the exact value for the missing side. In other words it is an expression

that refers to the unique number satisfying the relationship. The other number,
7.616, is an approximation to the answer (the ‘≈’ sign is used to indicate an
approximation). Calculators are wonderful at finding approximations but bad at
finding exact values. Make sure when answering the questions that your answer is
in the requested form.

Also, when dealing with expressions that involve square roots there is a tempta-
tion to simplify along the following lines,

√
a2 + b2 = a+ b. This seems reasonable,

just taking the square root of each term, but it is not correct. Erase any thought
of doing this from your mind.

This does not work because there are several operations going on in this rela-
tionship. There are terms being squared, terms being added and terms having the
square root taken. Rules of algebra dictate which operations must be done first,
for example one rule says that if you are taking a square root of terms being added
together you first must add then take the square root. Most of the rules of algebra
are intuitive and so do not worry too much about memorizing them.

3.2 The Pythagorean theorem and dissection

There are literally hundreds of proofs for the Pythagorean theorem. We will not
try to go through them all but there are books that contain collections of proofs
of the Pythagorean theorem.

Our first method of proof will be based on the principle of dissection. In
dissection we calculate a value in two different ways. Since the value doesn’t
change based on the way that we calculate it, the two values that are produced
will be equal. These two calculations being equal will give birth to relationships,
which if done correctly will be what we are after.

For our proof by dissection we first need something to calculate. So starting
with a right triangle we will make four copies and place them as shown below.
The result will be a large square formed of four triangles and a small square (you
should verify that the resultant shape is a square before proceeding).

The value that we will calculate is the area of the figure. First we can compute
the area in terms of the large square. Since the large square has sides of length c
the area of the large square is c2.
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LECTURE 3. THE PYTHAGOREAN THEOREM 16

a-b

a-b

b a b

ab

a

c

c

The second way we will calculate area is in terms of the pieces making up the
large square. The small square has sides of length (a−b) and so its area is (a−b)2.
Each of the triangles has area (1/2)ab and there are four of them.

Putting all of this together we get the following.

c2 = (a− b)2 + 4 · 1

2
ab = (a2 − 2ab+ b2) + 2ab = a2 + b2

3.3 Scaling

Imagine that you made a sketch on paper made out of rubber and then stretched
or squished the paper in a nice uniform manner. The sketch that you made would
get larger or smaller, but would always appear essentially the same.

This process of stretching or shrinking is scaling. Mathematically, scaling is
when you multiply all distances by a positive number, say k. When k > 1 then we
are stretching distances and everything is getting larger. When k < 1 then we are
shrinking distances and everything is getting smaller.

What effect does scaling have on the size of objects?

Lengths: The effect of scaling on paths is to multiply the total length by a
factor of k. This is easily seen when the path is a straight line, but it is also
true for paths that are not straight since all paths can be approximated by
straight line segments.

Areas: The effect of scaling on areas is to multiply the total area by a
factor of k2. This is easily seen for rectangles and any other shape can be
approximated by rectangles.

Volumes: The effect of scaling on volumes is to multiply the total volume
by a factor of k3. This is easily seen for cubes and any other shape can be
approximated by cubes.
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LECTURE 3. THE PYTHAGOREAN THEOREM 18

?7 105

only need to multiply the length of 7 by our scaling factor to get our
final answer.

To figure out the scaling factor, we note that the side of length 5 became
a side of length 10. In order to achieve this we had to scale by a factor
of 2. So in particular, the length of the indicated side is 14.

3.4 The Pythagorean theorem and scaling

To use scaling to prove the Pythagorean theorem we must first produce some
similar triangles. This is done by cutting our right triangle up into two smaller
right triangles, which are similar as shown below. So in essence we now have three
right triangles all similar to one another, or in other words they are scaled versions
of each other. Further, these triangles will have hypotenuses of length a, b and c.

To get from a hypotenuse of length c to a hypotenuse of length a we would
scale by a factor of (a/c). Similarly, to get from a hypotenuse of length c to a
hypotenuse of length b we would scale by a factor of (b/c).

In particular, if the triangle with the hypotenuse of c has area M then the
triangle with the hypotenuse of a will have area M(a/c)2. This is because of the
effect that scaling has on areas. Similarly, the triangle with a hypotenuse of b will
have area M(b/c)2.

But these two smaller triangles exactly make up the large triangle. In partic-
ular, the area of the large triangle can be found by adding the areas of the two
smaller triangles. So we have,

M = M
(a
c

)2

+M

(
b

c

)2

which simplifies to c2 = a2 + b2.

+= M(b/c) 2M(a/c) 2Marea:

+=
b

a

b

a
c
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Lecture 4

Angle measurement

In this lecture we will look at the two popular systems of angle measurement,
degrees and radians.

4.1 The wonderful world of π

The number π (pronounced like “pie”) is among the most important numbers
in mathematics. It arises in a wide array of mathematical applications, such as
statistics, mechanics, probability, and so forth. Mathematically, π is defined as
follows.

π =
circumference of a circle

diameter of a circle
≈ 3.14159265 . . .

Since any two circles are scaled versions of each other it does not matter what
circle is used to find an estimate for π.

Example 1 Use the following scripture from the King James Version
of the Bible to estimate π.

And he made a molten sea, ten cubits from the one brim to the other:
it was round all about, and his height was five cubits: and a line of
thirty cubits did compass it round about. – 1 Kings 7:23

Solution The verse describes a round font with a diameter of approxi-
mately 10 cubits and a circumference of approximately 30 cubits. Using
the definition of π we get.

π ≈ 30

10
= 3

Note that this verse does not give an exact value of π, but this should not be
too surprising and is most likely attributed to a rounding or measurement error.

24
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LECTURE 4. ANGLE MEASUREMENT 25

4.2 Circumference and area of a circle

From the definition of π we can solve for the circumference of a circle. From which
we get the following,

circumference = π · (diameter)

= 2πr (where r is the radius of the circle).

The diameter of a circle is how wide the circle is at its widest point. The radius
of the circle is the distance from the center of the circle to the edge. Thus the
diameter which is all the way across is twice the radius which is half-way across.

One of the great observations of the Greeks was connecting the number π
which came from the circumference of the circle to the area of the circle. The
idea connecting them runs along the following lines. Take a circle and slice it into
a large number of pie shaped wedges. Then take these pie shaped wedges and
rearrange them to form a shape that looks like a rectangle with dimensions of half
the circumference and the radius. As the number of pie shaped wedges increases
the shape looks more and more like the rectangle, and so the circle has the same
area as the rectangle, so we have,

area =

(
1

2
(2πr)

)
r = πr2.

Pictorially, this is seen below.

~ pr

~ r

4.3 Gradians and degrees

The way we measure angles is somewhat arbitrary and today there are two major
systems of angle measurement, degrees and radians, and one minor system of angle
measurement, gradians.

Gradians are similar to degrees but instead of splitting up a circle into 360
parts we break it up into 400 parts. Gradians are not very widely used and this
will be our only mention of them. Even though it is not a widely used system
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LECTURE 4. ANGLE MEASUREMENT 27

to find our angle that we want we can subtract off 18 revolutions and
the result will be an angle between 0◦ and 360◦. So our final answer is,

6739◦ − 18 · 360◦ = 259◦.

4.4 Minutes and seconds

It took mathematics a long time to adopt our current decimal system. For thou-
sands of years the best way to represent a fraction of a number was with fractions
(and sometimes curiously so). But they needed to be able to measure just a frac-
tion of an angle. To accommodate this they adopted the system of minutes and
seconds.

One minute (denoted by ′) corresponds to 1/60 of a degree. One second (de-
noted by ′′) correspond to 1/60 of a minute, or 1/3600 of a degree. This is analogous
to our system of time measurement where we think of a degree representing one
hour.

This system of degrees and minutes allowed for accurate measurement. For
example, 1′′ is to 360◦ as 1 second is to 15 days. As another example, if we let
the equator of the earth correspond to 360◦ then one second would correspond to
about 101 feet.

Most commonly the system of minutes and seconds is used today in cartog-
raphy, or map making. For example, Mount Everest is located at approximately
27◦59′16′′ north latitude and 86◦55′40′′ west longitude.

The system of minutes and seconds is also used in other places such as com
woodworking machines, but for the most part it is not commonly used. In ad-
dition most handheld scientific calculators are also equipped to convert between
the decimal system and D◦M ′S ′′. For these two reasons we will not spend time
mastering this system.

Example 3 Convert 51.1265◦ to D◦M ′S ′′ form.

Solution It’s easy to see that we will have 51◦, it is the minutes and
seconds that will pose the greatest challenge to us. Since there are 60′

in one degree, to convert .1265◦ into minutes we multiply by 60. So we
get that .1265◦ = 7.59′. So we have 7′. Now we have .59′ to convert
to seconds. Since there are 60′′ in one minute, to convert .59′ into
seconds we multiply by 60. So we get that .59′ = 35.4′′. Combining
this altogether we have 51.1265◦ = 51◦7′35.4′′.
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LECTURE 6. TRIGONOMETRY WITH CIRCLES 49

q

r = x2+y2(x,y)

Here r =
√
x2 + y2 is the distance to the origin and will always be positive.

Then we can define the trigonometric functions in terms of x, y and r as follows,

sin(θ) =
y

r
, cos(θ) =

x

r
, tan(θ) =

y

x
,

csc(θ) =
r

y
, sec(θ) =

r

x
, cot(θ) =

x

y
.

This works by taking any point in the plane (x, y) and associating it with (or
scaling it to) a point on the unit circle, namely the point (x/r, y/r), which is
associated with the same angle θ. We then let the trigonometric functions for the
point (x, y) to be defined as the trigonometric functions for the point on the unit
circle (x/r, y/r).

In particular, as with the unit circle, we can associate every point in the plane
except the origin with an angle. The idea of taking a point and scaling it to a
point on the unit circle will play an important role later on.

6.9 Supplemental problems

1. Given that the circle shown below is the unit circle match each of the six
trigonometric functions for the angle θ to one of the following lengths, OA,
OB, OC, OD, MC and MD. Hint: find the angle formed by going from O
to D to C in terms of θ.

q

D

B M

CAO
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LECTURE 7. GRAPHING THE TRIGONOMETRIC FUNCTIONS 55

When we deal with graphing the trigonometric functions we will always work in
radians. This is not because we cannot graph in degrees, but rather there are some
deeper hidden reasons which come from calculus as to why we choose radians. We
will catch a glimpse of these reasons later on.

7.3 Over and over and over again

If we were to graph the sine and cosine curves correctly we would have to put in a lot
of values. However, we can save ourselves some work by making an observation.
We know that if two angles are co-terminal they will have the same values for
the trigonometric functions, for example sin(x + 2π) = sin(x). In particular the
trigonometric functions are repeating.

To make a graph of the trigonometric function we only need to determine what
it looks like on an interval that contains a complete revolution. Once we have that
we just copy it over and over to get the complete graph for the function.

Functions that have this property are called periodic and the minimum amount
of time it takes to repeat is the period. The sine and cosine functions are 2π
periodic while the tangent function is π periodic.

7.4 Even and odd functions

The graphs of some functions exhibit symmetry. There are two special types of
symmetry that we will encounter when graphing functions.

The first type of symmetry is around the y axis. Imagine graphing the function
then folding it in half along the y axis. If the two halves exactly match up then it
is symmetrical around the y axis. Such a function is called an even function and
satisfies the relationship f(−x) = f(x). Examples of even trigonometric functions
are the cosine and secant functions.

The second type of symmetry is around the origin. Imagine graphing the
function then rotating the graph a half revolution around the origin. If it looks the
same as before then it is symmetrical around the origin. Such a function is called
an odd function and satisfies the relationship f(−x) = −f(x). Examples of odd
trigonometric functions are the sine, cosecant, tangent and cotangent functions.

Example 1 Determine whether the following function is even, odd or
neither.

f(x) = sin2(x)− cos(x)
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LECTURE 7. GRAPHING THE TRIGONOMETRIC FUNCTIONS 58

2 2p+2

2p

-1

1

7.6 The wild and crazy inside terms

In graphing functions changing the inside terms seems to do things that are
counter-intuitive. As an example consider the function y = a sin(bx − c) + d.
This function will have period 2π/b and a horizontal shift of c/b. Not what we
would expect.

To see where these strange values arise recall that one period of the sine curve
corresponds to one revolution around the circle. So one period begins at 0 and
ends at 2π. If we are interested in exploring one period of our modified curve
we would do it by finding when the inside expression is 0 (this is the start of the
period) and when it is 2π (this is the end of the period). In particular we have the
following,

start bx− c = 0 or x = (c/b)
end bx− c = 2π or x = (2π/b) + (c/b).

Note that the start of the period is now at the value c/b, this is why our
horizontal shift is c/b. The difference between the start and the end represents the
period, that is how long it takes to repeat, and so the period will be 2π/b.

Example 2 Given that the graph shown below is one period of the
sine curve find the amplitude, vertical shift, period and horizontal shift.
Using these values write an equation for the curve in the form,

y = a sin(bx− c) + d

p/2 2p

3
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LECTURE 7. GRAPHING THE TRIGONOMETRIC FUNCTIONS 59

Solution From the graph the height between the lowest and highest
values is 3, and so the amplitude is half that or 3/2. The vertical
shift (keeping in mind that the sine curve should start at the origin) is
3/2. The period is the length from the beginning to the end and so is
2π − π/2 = 3π/2. Finally, the horizontal shift is π/2.

With these values in hand we can now start finding a, b c and d. The
amplitude is a and so a = 3/2. The vertical shift is d and so d = 3/2.
The period is 2π/b so 2π/b = 3π/2 or b = 4/3. The horizontal shift is
c/b so (c = bπ/2 = 2π/3). Putting these together we have,

y =
3

2
sin

(
4

3
x− 2π

3

)
+

3

2
.

In this example we had a specific period of the sine curve given to us. What
if we were given the whole sine curve and were asked to find an expression of the
form y = a sin(bx − c) + d, which period should we use? The correct answer is
any of them. You can choose any full period to determine your constants. Note
that the constants will depend upon which period you choose but they will all
correspond to the same curve.

Example 3 Given the following function find the amplitude, vertical
shift, period and horizontal shift. Then use these values to graph one
period of the function.

y = 2 sin
(
πx+

π

3

)
− 3

Answer: From the equation we can read off the amplitude, which is
a = 2 and the vertical shift which is d = −3. To find the period we
take the value b = π and divide it into 2π which gives a period of
(2π/π) = 2. To find the horizontal shift we take the value of c = −π/3
and divide it by b = π to get a horizontal shift of (−π/3)/π = −1/3.

To graph the function we first use the vertical and horizontal shift to
find where the curve starts. We can then use the information about
the amplitude and the period to draw a box that will tightly contain
one period of the curve. The box for our problem is shown below on
the left. With the box in place we then draw in one period of the sine
curve, exactly filling the box, to get our required graph. This is shown
below on the right.
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Lecture 9

Working with trigonometric
identities

In this lecture we will expand upon our trigonometric skills by learning how to
manipulate and verify trigonometric identities.

9.1 What the equal sign means

In mathematics we often will use the ‘=’ sign with two different meanings in mind.
Namely, it is used to denote identities and conditional relationships.

An identity represents a relationship that is always true. We have seen several
examples of this. For instance the Pythagorean identity, cos2(θ) + sin2(θ) = 1 is
true for every value of θ and so is an identity.

A conditional relationship represents an equation that is sometimes (possibly
never) true. We have also seen examples of this. For instance in the last lecture
we found that the relationship cos(θ) = 2/3 is satisfied for some but not all θ.

So the ‘=’ sign gets a lot of usage and you need to be careful to see whether
it is being used to represent an identity or a conditional relationship. (Some
mathematical zealots will use the ‘≡’ sign to denote an identity, we shall not
adopt this practice here.)

For now we will focus on identities and save looking at conditional relationships
for later. The most important part of working with identities is being able to
manipulate them, bend them to your will so to speak. To learn how to do this we
will look at a variety of techniques from algebra.

72
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LECTURE 9. WORKING WITH TRIGONOMETRIC IDENTITIES 74

9.3 The conju-what? The conjugate

One very useful algebraic trick to use in simplifying some expressions is the conju-
gate. The conjugate basically means change the sign in the middle. So for example
the conjugate of 1 + cos(θ) is 1− cos(θ) (i.e. we changed the sign in the middle).
This is useful because when multiplying conjugates the “cross terms” cancel, that
is,

(a+ b)(a− b) = a2 − ab+ ab− b2 = a2 − b2.

Use of the conjugate is particularly helpful in getting terms that have expres-
sions like 1± cos(x) or 1± sin(x) in the denominator out of fractional form. This
is because of the Pythagorean identities. For example,

(1− cos(x))(1 + cos(x)) = 1− cos2(x) = sin2(x).

Example 2 Rewrite the following expression so that it is not in frac-
tional form.

1

1 + sin(x)

Solution We will start with the expression and multiply through both
the top and the bottom by the conjugate. (We need to multiply both
the top and the bottom so that the total value of the expression does
not change.) Doing this, we get the following.

1

1 + sin(x)
=

1(1− sin(x))

(1 + sin(x))(1− sin(x))
=

1− sin(x)

1− sin2(x)

=
1− sin(x)

cos2(x)
=

1

cos2(x)
− sin(x)

cos2(x)

=
1

cos2(x)
− sin(x)

cos(x)

1

cos(x)

= sec2(x)− tan(x) sec(x)

Note that in this example we broke up the fraction into two pieces. This is no
problem when we break up addition in the numerator, i.e. (a+b)/c = (a/c)+(b/c),
but does not work for terms in the denominator.
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LECTURE 9. WORKING WITH TRIGONOMETRIC IDENTITIES 75

9.4 Dealing with square roots

Sometimes when dealing with expressions we will need to work with square roots.
When doing so there are some important things to remember. The first is that
the square root does not break up over addition, i.e.

√
a+ b 6=

√
a+

√
b, but does

break up over multiplication, i.e.
√
ab =

√
a
√
b.

The second is that the expression
√
x2 does not always equal x, but rather√

x2 = |x|. In other words, if you square a number and then take the square root
you will be left with the absolute value of what you started with. You can drop
the absolute value sign when you are certain that the value will be nonnegative.

Example 3 Simplify so as to remove the square root in the following
expression.√

1− cos(θ)

1 + cos(θ)

Solution Note that in the denominator inside the square root that we
have 1 + cos(θ). This is a wonderful expression to use conjugates with.
So starting by multiplying through by the conjugates, we will get the
following.√

1− cos(θ)

1 + cos(θ)
=

√
(1− cos(θ))(1− cos(θ))

(1 + cos(θ))(1− cos(θ))
=

√
(1− cos(θ))2

1− cos2(θ)

=

√
(1− cos(θ))2

sin2(θ)
=
|1− cos(θ)|
| sin(θ)|

=
1− cos(θ)

| sin(θ)|

In the last step we can drop the absolute value sign on the term 1 − cos(θ)
because it will always be nonnegative, or in other words bigger than or equal to
zero. But we cannot drop the absolute value sign on the term sin(θ) because it
can sometimes be negative.

9.5 Verifying trigonometric identities

Up to this point we have not been verifying identities but just putting tools in place
to simplify expressions. Verifying an identity requires simplifying one expression
to another expression.

When verifying identities the following guidelines are helpful to keep in mind.
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LECTURE 10. SOLVING CONDITIONAL RELATIONSHIPS 81

thing to do, but there is a subtle reason that we cannot. When solving conditional
relationships, we are looking at x over all possibilities and trying to determine
which ones satisfy the relationship. When we divide both sides of the equation by
cos(x) then when cos(x) is 0 we are dividing by 0 which is bad mathematics. So
we have the following rule in solving conditional relationships: You cannot divide
to cancel terms if the term is ever zero.

10.3 Use the identities

Sometimes grouping similar terms together and factoring will not be enough, so we
start getting more sophisticated. We will sometimes need to turn to the identities
to help us. The identities can be used in several ways, primary is their ability
to simplify complex expressions that might be on one side of the equation. In
particular they can be used in combining terms.

Example 3 Solve for all the angles for which the following conditional
relationship is satisfied.

sin(x) = cos(x)

Solution In this example we cannot combine the terms since they are
not similar and if we grouped the terms on one side, we would not
be able to factor out any common expression. So after staring at the
equation for some time we come up with a plan. Namely, all we have
here is the sine and cosine function, and the tangent function is the
sine over the cosine. So let us divide both sides by the term cos(x)
(here it will be alright to divide because we are not cancelling terms).
So we have the following,

sin(x)

cos(x)
=

cos(x)

cos(x)
or tan(x) = 1.

Now we have gotten to our ideal situation, a function being equal to a
number. Looking up on our chart we see that the tangent function is
1 when our angle is 45◦ (or π/4). The tangent function is nice because
it is periodic with period of 180◦ or π and so our final solution is,

45◦ + k180◦ for k = 0,±1,±2, . . . or
π/4 + kπ for k = 0,±1,±2, . . . .
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Lecture 11

The sum and difference formulas

In this lecture we will learn how to work with terms such as sin(x+ y). Along the
way we will learn the useful tool of projection.

11.1 Projection

A proper discussion of projection must wait until later. For now we will use a very
simple and straightforward version. Namely, given a hypotenuse of a right triangle
and an acute angle we will find expressions for the lengths of the legs of the right
triangle.

To find our formulas for projection consider the picture below where we know
the length of the hypotenuse (which we will call H) and the acute angle θ.

H

q

Using the definition of trigonometric functions as ratios of right triangles we
can find the length of the missing sides. So we have,

sin(θ) =
opp

H
or opp = H sin(θ),

cos(θ) =
adj

H
or adj = H cos(θ).

So knowing the length of the hypotenuse and an acute angle we can then fill
in the lengths of the other sides of the triangle, as is shown below.

To see why we use the name projection, imagine standing directly over the
triangle with a bright flashlight. If we point our flashlight straight down the
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LECTURE 12. HERON’S FORMULA 93

where the side and the circle just touch this will form a right angle and so we will
have right triangles. In fact, we will have a total of six right triangles. To help
us work with these triangles we label everything we can. Doing this we get the
picture below.

gg
b
b a

a

X

Z

Y

R

R

R

A

CC

B

A
B

c

b

a

12.4 The little ones

With our picture in place it is quite quick to add up the area of all these little
triangles. Since they are all right triangles we can use some simple formulas and
we will get that the total area is,

area = 2 · 1

2
AR + 2 · 1

2
BR + 2 · 1

2
CR = (A+B + C)R.

We would be done except that we do not know what A, B, C and R are. What
we do know are the lengths of the sides of the big triangle, i.e., a, b and c. We
need to find a way to rewrite A, B, C and R as expressions of a, b and c.

12.5 Rewriting our terms

From the triangle we get the relationships

A+ C = b, A+B = c, B + C = a.

Now if this were an algebra book we would take some time to take these three
equations and solve for A, B and C in terms of a, b and c. But we are here to
learn about trigonometry and so we will jump to the end and get the following,

A =
1

2
(−a+ b+ c), B =

1

2
(a− b+ c), C =

1

2
(a+ b− c).

Preview from Notesale.co.uk

Page 102 of 183



LECTURE 13. DOUBLE ANGLE IDENTITY AND SUCH 98

apply the double angle formulas from above and get,

sin(2θ) = 2 sin(θ) cos(θ) = 2 · 3

5
· 4

5
=

24

25
,

cos(2θ) = cos2(θ)− sin2(θ) =

(
4

5

)2

−
(

3

5

)2

=
7

25
.

An amazing thing about these identities is how much information we can get
without actually knowing what the angle θ is.

Starting with the double angle identity for the cosine function we can use the
Pythagorean identity to rewrite it in different ways. Namely, we can have the
following,

cos(2x) = cos2(x)− sin2(x)

= cos2(x)− (1− cos2(x))

= 2 cos2(x)− 1,

cos(2x) = cos2(x)− sin2(x)

= (1− sin2(x))− sin2(x)

= 1− 2 sin2(x).

13.2 Power reduction identities

Starting with these last two forms for cos(2x) we can manipulate and solve for the
terms cos2(x) and sin2(x).

cos(2x) = 2 cos2(x)− 1 so cos2(x) =
1 + cos(2x)

2

cos(2x) = 1− 2 sin2(x) so sin2(x) =
1− cos(2x)

2

These are called the power reduction identities since we start with the term on
the left hand side with a square power and the terms on the right side do not have
square power terms in them (i.e. we reduced the highest power term by one).

We can use these formulas multiple times (sometimes in conjunction with other
identities) to reduce expressions with powers higher than degree two.

Example 2 Rewrite sin4(x) to an expression that does not have any
terms with a power greater then one or two different trigonometric
functions multiplied together.
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Lecture 15

Law of sines and cosines

In this lecture we will introduce the law of sines and cosines which will allow us to
explore oblique triangles.

15.1 Our day of liberty

We can now free ourselves from using only right triangles and be able to work with
all sorts of triangles. We will do it by introducing the law of sines and the law of
cosines. Our derivation of these laws will be through use of right triangles, but
these laws will let us put the right triangles in the background once proved.

For our notation in this lecture we will let a, b and c represent the length of
the sides of a triangle while the quantities α, β and γ will represent the measure
of the corresponding angles. Namely, they will match up according to the picture
below.

c
ab

ba
g

15.2 The law of sines

For this law, start with any arbitrary triangle and from one of the vertices draw
a line straight down to the base. This will split the triangle up into two smaller
right triangles, such as is shown below,

109
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LECTURE 15. LAW OF SINES AND COSINES 112

q

5

4 6

and one angle. In order to use the law of cosines we need to know at
least three of the four. Since we know the length of all of the sides we
are okay to proceed with using the law of cosines. Doing so we get the
following,

cos(θ) =
42 + 62 − 52

2(4)(6)
=

9

16
so θ = arccos

(
9

16

)
≈ 55.77◦.

15.4 The triangle inequality

From the law of cosines we can derive a very important mathematical rule. First,
recall that the cosine function has its range of values between -1 and 1 and in
particular − cos(γ) ≤ 1. With this in mind, consider the following.

c2 = a2 + b2 − 2ab cos(γ) ≤ a2 + 2ab+ b2 = (a+ b)2

By taking the square roots of both sides we get the following.

Triangle inequality c ≤ a+ b

This also has the alternate forms a ≤ b+ c and b ≤ a+ c.
In words, the triangle inequality says the following, the direct route is the short-

est. If you want to move from one point on a triangle to another then going on
the segment that connects the two points will always have you travel a distance
that is less than or equal to going along the other two segments.

One of the most useful properties of the triangle inequality is to test whether
or not you have a triangle. If you add up the two shortest sides of a triangle and
it is less than the longest side, then it is no triangle at all.

Notice that in the triangle inequality we have “less than or equal to,” what
would happen if we had equality? This would form a strange looking “triangle,”
namely, the triangle would not look like a triangle but rather a line segment.
Sometimes there is concern over whether this truly is a triangle. At any rate it
is good to think of it as an “extreme” example of a triangle. (Often times by
studying extreme examples, i.e., worst case scenarios, we can get an idea of some
behavior of an object.)

The triangle inequality is used extensively in mathematics. Particularly in
calculus and any branch of mathematics that has to deal with measurement of
space.
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LECTURE 15. LAW OF SINES AND COSINES 114

7035

23

80

45

18

5. Using the formula from the previous question find the area of the triangles
shown below. Round your answers to two decimal places.

6. Using only the information shown in the picture below find the total area.
Round your answer to two decimal places.

43

12
6850

62
8 7

5

Hint: this has been broken up into three triangles and we have three formulas
to find area that use information about the length and the angles.

7. Using the triangle inequality show that d ≤ a + b + c in the figure below.
Hint: to use the triangle inequality you will need a triangle.

d

c
b

a

8. True/False. Since by the triangle inequality we have that c ≤ a + b then it
is impossible for c2 > a2 + b2.

9. The law of sines and cosines are well known, but there is also a lesser known
law, called the law of tangents.

Law of tangents
tan (α+ β/2)

tan (α− β/2)
=
a+ b

a− b

Verify the law of tangents formula.
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LECTURE 17. SOLVING TRIANGLES 131

94
12

11

13

1585

106

23

18

15

are a known distance apart and get the picture shown below. Using the given
information find the distance between A and B (something which is almost
impossible to measure directly). Round your answer to one decimal place.

4.3 miles

84
49

103
64

B
A

8. King Arthur has recently decided to find the speed of the various birds that
he has encountered. In particular he has recently acquired a pet parrot
named Polly for which he wants to determine Polly’s airspeed velocity. To
do this he has Polly trained to always fly back to Camelot and then one
day sends Polly out to a nearby village and at noon released, at the same
time ye olde royal hour glass in Camelot starts keeping track of time. Polly
makes the trip from the village to the castle in 93 minutes. However, King
Arthur forgot to get an estimate on the distance as a parrot flies between
the village and Camelot. He turns to you as the royal trigonometrist to
determine the straight line distance from the village to Camelot and gives
you the information shown below.

Determine the straight line distance and then use this information to deter-
mine the airspeed velocity of Polly measured in kilometers per hour. Round
your answers to the nearest whole number.
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LECTURE 17. SOLVING TRIANGLES 132

village

70

105

145

14 km

12 km

15 km
9 km

Camelot
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LECTURE 18. INTRODUCTION TO LIMITS 135

18.4 A limit involving trigonometry

With the idea of the squeezing principle in hand we can now evaluate an important
limit. Specifically we are going to determine what happens to the values of the
function,

sin(x)

x
,

as the value of x (measured in radians) approaches 0.
Consider the diagram shown below.

x
DCB

A

1

O

From the diagram we have that AB ≤ AC ≤ AD. Further, we can find the
values of these lengths in terms of x. To find AB we can use the right triangle at
the points A, B and the origin which has a hypotenuse of length 1 and an acute
angle x to get that AB = sin(x). Similarly, we can get AD = tan(x). To find the
length AC we note that it is an arc of a circle with radius 1 and central angle x
(with x measured in radians), so from geometry we have that AC = x.

It follows that for x between 0 and π/2 radians that,

sin(x) ≤ x ≤ tan(x).

In a fraction if you make a denominator smaller then the total value gets larger
and if you make the denominator larger the total value gets smaller. In particular
using the relationship we just found we have,

cos(x) =
sin(x)

tan(x)
≤ sin(x)

x
≤ sin(x)

sin(x)
= 1.

We have now been able to put the function sin(x)/x in between the two func-
tions 1 and cos(x) both of which go to 1 as x gets closer and closer to 0. Therefore
we can apply the squeezing principle and conclude that the function sin(x)/x will
also go to 1 as x goes to 0. Using mathematical notation we would say this in the
following way,

lim
x→0

sin(x)

x
= 1.
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LECTURE 18. INTRODUCTION TO LIMITS 136

Example 1 Using the relationship,

cos(x) ≤ sin(x)

x
≤ 1,

for x between 0 and π/2 radians show that,

sin(2x)

2
≤ sin2(x)

x
≤ sin(x),

is also satisfied for x between 0 and π/2 radians. From this, find what
happens to the values of sin2(x)/x as x approaches 0.

Solution First note that sin2(x)/x = sin(x)(sin(x)/x). So using the
given relationship we have,

sin(2x)

2
= sin(x) cos(x) ≤ sin(x)

sin(x)

x
≤ sin(x) · 1 = sin(x)

We have now been able to put the term sin2(x)/x in between two
functions. Looking at these functions they both go to the value of 0
as x goes to 0. By the squeezing principle we have that the function
sin2(x)/x will approach the value of 0 as x goes to 0.

18.5 Supplemental problems

1. Two trains start out ten miles apart on the same track and head toward
each other, each going at five miles per hour. Between the two trains is a
mathematical superfly who travels at a speed of ten miles per hour. The
fly started on one train and is flying back and forth between the two trains.
The fly is super in the sense that it can instantaneously turn around and
start flying the other direction when it reaches one of the trains. Before the
two trains collide the superfly will have made infinitely many trips back and
forth between the two trains. How far will the fly have traveled? Hint: there
is a very, very easy way to get the answer and a very, very hard way to get
the answer; use the easy way.

2. Find the exact value of

lim
x→0

sin(x+ π)

x
.
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LECTURE 20. INTRODUCTION TO VECTORS 145

Scaling and magnitude have a nice relationship, namely that if we scale a vector
by a value of c then we multiply the magnitude by |c| (magnitude is always a non-
negative number). The reason that this works is shown below.

‖c~v‖ = ‖〈ca, cb〉‖ =
√

(ca)2 + (cb)2 =
√
c2(a2 + b2) = |c|

√
a2 + b2 = |c|‖~v‖

20.5 Working with direction

With a way to find magnitude we now turn to direction. This is trickier to get our
finger on. What exactly is a direction? A good way to think about direction is as
a unit vector. A unit vector is a vector with length one and so all of the important
information about the vector is contained in the direction.

A useful fact is that every vector, besides the zero vector (i.e. 〈0, 0〉), can be
represented in a unique way as a positive scalar times a unit vector. Namely, we
have the following.

~u = ‖~u‖
(

1

‖~u‖
~u

)
The important thing to note is that (1/‖~u‖)~u is a unit vector. This follows from
the argument just given about multiplying the magnitude of the vector by the
same amount as you scale the vector.

Example 1 Find a unit vector in the same direction as

〈2,−5〉

Solution Proceeding with the idea just given we will divide this vector
by its magnitude and get a unit vector pointing in the same direction.
So we will get the following vector.

1

‖〈2,−5〉‖
〈2,−5〉 =

1√
22 + (−5)2

〈2,−5〉 =

〈
2√
29
,
−5√
29

〉
There are two very important unit vectors that have been given names, these

are called the standard unit vectors. They are i = 〈1, 0〉 and j = 〈0, 1〉. These are
useful in giving another way to represent vectors in component form. Namely, we
have the following,

〈a, b〉 = 〈a, 0〉+ 〈0, b〉 = a〈1, 0〉+ b〈0, 1〉 = ai + bj.

When you see a vector ~u in the form ai+ bj, think of a as how much the vector
is moving in the x direction and b as how much the vector is moving in the y
direction. This is shown in the picture below.
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LECTURE 20. INTRODUCTION TO VECTORS 149

at what speed and what direction would the boat travel? In other words,
at what direction and what speed would the boat be traveling with only the
wind? Round your answers to one decimal place. A badly drawn picture
is shown below. Hint: to find the effect of the wind “subtract” the current
from the combination of the current and wind.

Current and Wind
34 km/hr, -7

Current
20 km/hr, -25

Wind
? km/hr, ?
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LECTURE 21. THE DOT PRODUCT AND ITS APPLICATIONS 152

Example 1 Find the dot product of two vectors the first of which has
a magnitude of 12 and a direction of 53◦ and the second of which has a
magnitude of 7 and a direction of 87◦ (where the angles are measured
in standard position).

Solution We do not have the component form of these vectors and so
we cannot directly apply the definition of the dot product. We could of
course find the component form, but let us see if there is not a better
way.

Notice that we can find the angle between the two vectors by taking
the difference of their angles. In particular, the angle between these
two vectors is 87◦ − 53◦ = 34◦. We already have the magnitudes of
these vectors and so we can apply our new relationship for dot product
and get the following.

~u · ~v = (12)(7) cos(34◦) ≈ 69.63

Example 2 Find the angle between the vectors ~u = 〈3,−8〉 and ~v =
〈−4,−2〉.
Solution This is a straightforward application of the dot product.

θ = arccos

(
~u · ~v
‖~u‖‖~v‖

)
= arccos

(
(3)(−4) + (−8)(−2)√

(3)2 + (−8)2
√

(−4)2 + (−2)2

)

= arccos

(
2√
365

)
≈ 83.99◦

21.3 Orthogonal

Two vectors are perpendicular to one another if they meet at an angle of 90◦. In
particular if ~u and ~v are perpendicular we have the following,

~u · ~v = ‖~u‖‖~v‖ cos(90◦) = 0.

So we can use the dot product to test if two vectors are perpendicular. In
general, we will say that two vectors whose dot product is zero are orthogonal.
So two vectors that are perpendicular to one another are said to be orthogonal.
By this convention we will say that ~0 (i.e. the zero vector) is orthogonal to every
vector.
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LECTURE 21. THE DOT PRODUCT AND ITS APPLICATIONS 157

(a) proj~v(~u+ ~w) = proj~v(~u) + proj~v(~w),

(b) proj~v(a~u) = aproj~v(~u).

[Note: any function that satisfies these two properties are linear. Linear
functions form the backbone for much of mathematics.]
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LECTURE 23. DE MOIVRE’S FORMULA AND INDUCTION 170

Graphically, these roots are around the unit circle as shown above.

23.8 Supplemental problems

1. Using De Moivre’s formula find equations for cos(3x) and sin(3x) in terms
of cos(x)’s and sin(x)’s.

2. Find (1 +
√

3i)15.

3. Find all the cube roots of −4
√

2−4
√

2i. Write your answers in trigonometric
form.

4. Find all of the fifth roots of −4 + 4i. Write your answers in trigonometric
form.

5. Using induction show that 1 + 2 + · · ·+ n = n(n+ 1)/2. Verify this formula
without induction by adding up the terms in forward and reverse order.

6. In an earlier homework assignment we found the following pattern:

cos
( π

2(n+1)

)
=

√
2 +

√
2 + · · ·+

√
2

2
, with n square roots in total.

Using mathematical induction prove this relationship is true for n = 1, 2, . . ..
Hint: first verify it is true for the first case and then use the half angle
formula for cosine to show that if it is true for one case then it is also true
for the next case.
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