2. Input offset current

The algebraic difference between the currents flowing into the Wo input terminals of the op-amp

It is denoted as
$$I_{ios} = |I_{b1} - I_{b2}|$$

For op-amp 741C the input offset current is 200nA

4. Differential Input Resistance

It is the equivalent desistance measured at either the inverting or non-inverting input terminal with the other input terminal grounded

It is denoted as R_i

For 741C it is of the order of $2M\Omega$

5. Input capacitance

It is the equivalent or pacitance measured at either the invertify or nonable erting input terminal with the other input terminal grounded.

It is denoted as C_i

For 741C it is of the 1-4 pF

۲

10. Offset voltage adjustment range

The range for which input offset voltage can be adjusted using the potentionneter so as to reduce output to zero

13. Power Consumption

It is the amount of guescent power to be consumed by opamp with zeropast voltage, for its proper functioning

It is denoted as P_c

W

Slew rate equation k

$$V_s = V_m \sin \omega t_W$$
 from $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{$

S = slew rate =
$$\frac{dVo}{dt}$$
 max

$$S = V_m \omega = 2 \pi f V_m$$

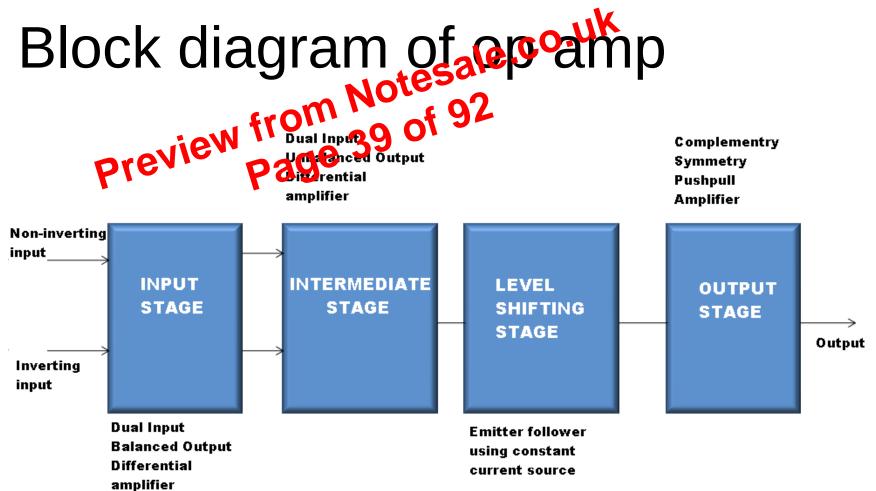
$$S = 2 \pi f V_m V / sec$$

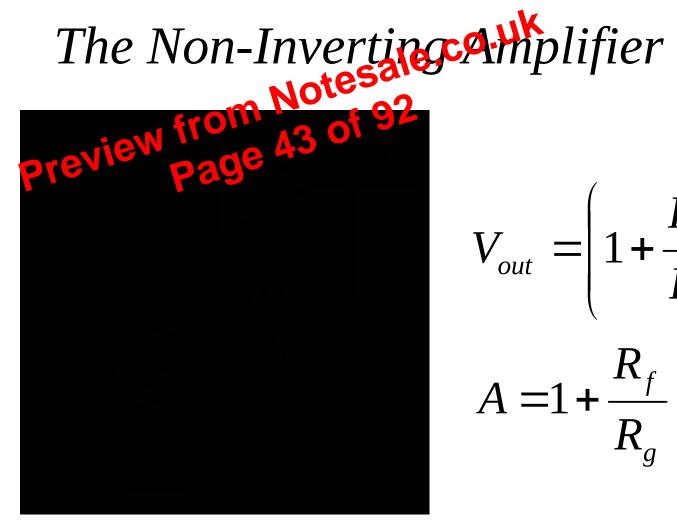
This is also called **full power bandwidth** of the op-amp

For distortion free output, the maximum allowable input frequency f_m can be obtained as

$$f_m = \frac{S}{2\Pi V_m}$$

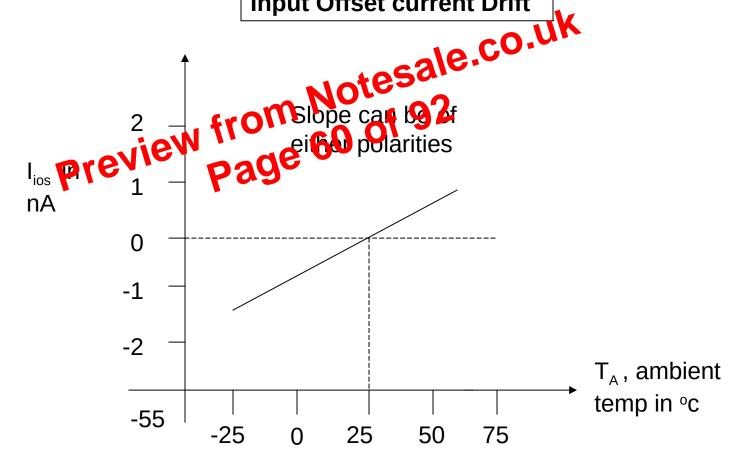
15. Gain – Bandwidth product

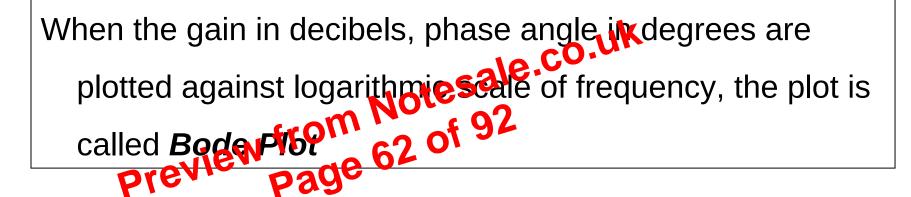

It is the bandwidth of bandwidth product


It is denoted as a bandwidth product bandwidth bandwidth product bandwidth bandwidth

The GB is also called unity gain bandwidth (UGB) or closed loop bandwidth

It is about 1MHz for op-amp 741C




$$V_{out} = \left(1 + \frac{R_f}{R_g}\right) V_{in}$$

$$A = 1 + \frac{R_f}{R_a}$$

The manner in which the gain of the op-amp changes with variation in frequency is known as the *magnitude plot*.

The manner in which the phase shift changes with variation in frequency is known as the *phase-angle plot*.

v

For an op-amp with single break frequency f_{\circ} , after f_{\circ} the gain bandwidth arthact is constant equal to UGB

UGB is also called gain bandwidth product and denoted as f_t . Thus f_t is the product of gain of op-amp and bandwidth.

The break frequency is nothing but a corner frequency f_{\circ} . At this frequency, slope of the magnitude plot changes. The op-amp for which there is only once change in the slope of the magnitude plot, is called single break frequency op-amp.

Open loop op-amp configurations

- The configuration of which outfur depends on input, but output has no effect on the mass is called open loop configuration.
- No feed back from output to input is used in such configuration.
- The opamp works as high gain amplifier
- The op-amp can be used in three modes in open loop configuration they are
- 1. Differential amplifier
- 2. Inverting amplifier
- 3. Non inverting amplifier

v

Inverting Amplifiek om Notesale.co.

The amplifier in which the gutout is inverted i.e. having 180° phase shift with respect to the input is called an inverting amplifier

$$V_0 = -A_{OL} V_{in2}$$

Keypoint: The negative sign indicates that there is phase shift of 180° between input and output i.e. output is inverted with respect to input.

Practical Non-Inverting Amplifier Notes are preview from Notes 92 Preview page 91 of 92

Closed Loop Voltage gain =

$$A_{CL} = \frac{A_{OL}(R_1 + R_f)}{R_1 + R_f + R_1 A_{OL}}$$