7. TRIGONOMETRIC FUNCTIONS

Synopsis:

1. Let $\theta \in \mathbb{R}$. Take an angle of measure θ radians in the standard position. Let P(x, y) be a point on the terminal side of the angle θ such that OP = r(> 0). Then

i) $\frac{y}{r}$ is called sine of θ and it is denoted by $\sin \theta$.

ii) $\frac{x}{r}$ is called cosine of θ and it is denoted by $\cos\theta$

iii) $\frac{y}{x}$ (x \neq 0) is called tangent of θ and it is denoted by $\tan \theta$.

iv) $\frac{x}{y}$ (y \neq 0) is called cotangent of θ and it is denoted by $\cot \theta$.

v) $\frac{r}{r}$ (x \neq 0) is called secant of θ and it is denoted by $\sec \theta$.

These six functions (ratios) are called trigonometric functions (θ its) $\sin\theta.\csc\theta = 1, \sin\theta = \frac{1}{\cos \cot\theta}, \csc\theta = \frac{1}{\sin\theta}$ $\cos\theta.\sec\theta = 1, \cos\theta \in \frac{1}{\sec\theta}, \sec\theta = \frac{1}{\cos\theta}$ $\tan\theta.\cot\theta = 1, \tan\theta = \frac{1}{\cos\theta} \cot\theta = \frac{1}{\cos\theta}$

 $\tan\theta.\cot\theta = 1$, $\tan\theta = \frac{1}{\cot\theta}$, $\cot\theta = \frac{1}{\cot\theta}$

5.
$$\frac{\sin \theta}{\cos \theta} = \tan \theta, \frac{\cos \theta}{\sin \theta} = \cot \theta$$

6. $\sin^2\theta + \cos^2\theta = 1$. $\sin^2\theta = 1 - \cos^2\theta,$ $\cos^2\theta = 1 - \sin^2\theta$

7.
$$1+\tan^2\theta = \sec^2\theta$$
, $\tan^2\theta = \sec^2\theta - 1$, $\sec^2\theta - \tan^2\theta = 1$.

8. $1 + \cot^2 \theta = \csc^2 \theta$, $\cot^2 \theta = \csc^2 \theta - 1$, $\csc^2 \theta - \cot^2 \theta = 1.$

9. $\sec \theta + \tan \theta = \frac{1}{\sec \theta - \tan \theta}$.