
end if

12/10/17

MERGESORT(A first half)
MERGSORT(A 2nd half)
MERGE

MERGESORT(A)

*
INORDERTRAVERSAL(T.left)
output T.data
INORDERTRAVERSAL(T.right)

INORDERTRAVERSAL(T) // T is a tree

*
output T.data
PRETRAV(T.LEFT)
PRETRAV(T.RIGHT)

PRETRAV(T)

*
POSTTRAV(T.left)
POSTTRAV(T.right)
output(T.data)

POSTTRAV(T)

return 0
if N = 0

N + TRIANGLES(N-1)
else

TRIANGLES(N) // N is an integer >= 0

Trace the algorithm with an input of N=6.

Recursion Depth N N = 0 return

0 6 F 21

1 5 F 15

2 4 F 10

3 3 F 6

4 2 F 3

5 1 F 1

6 0 T 0

output = 21

IB Exam Question: 6. Consider the following recursive algorithm FUN(X, N), where X and N are two integers.

FUN(X, n)

return 1
if N<=0 then

return X*FUN(X, N-1)
else

end if

Determine how many times multiplication is performed when this algorithm is executed. [1]a)
Determine the value of FUN(2,3), showing all of your working [3]b)
State the purpose of this recursive algorithm [1]c)

The return statement gives the value that the algorithm generates.

X N return

2 3 8

2 2 4

2 1 2

2 0 1

Na)
It finds XNc)

Value of FUN(2,3) = 8

IB Exam Question 2:

*if T = nil
then return

 Topic 5 Page 2

Preview from Notesale.co.uk

Page 2 of 12

Topic Class Notes Organised Notes

5.1.18 Define the term dynamic
data structure.

Dynamic data structures are data structures that can change size during the execution of a
program. The size of the structure is determined during run time, which is a very efficient use of
memory space.

5.1.19 Compare the use of static
and dynamic data structures.

Static data structures Dynamic data structures

Computer can allocate space during
compilation
Easy to program
Easy to check for overflow
An array allows random access

Only uses the space needed at any time
Makes efficient use of memory
Storage no longer required can be returned
to the system for other use

Programmer has to estimate maximum
amount of space needed
Can waste space

Difficult to program
Can be slow to implement searches
A linked list only allows serial search

5.1.20 Suggest a suitable
structure for a given situation.

Stacks:
The most important application of a stack is to implement function calls. This provides a
technique for eliminating recursion from a program.

Queues:
Computing applications: serving requests of a single shared
resource (printer, disk, CPU),
Buffers: MP3 players and portable CD players, iPod playlist.
Playlist for jukebox: add songs to the end, play from the front
of the list.
Handling interruptions, so the first interruption can be treated first

Linked list:
You need constant-time insertions/deletions from the list.
You don't know how many items will be in the list.
You don't need random access to any elements.
You want to be able to insert items in the middle of the list.

Arrays:
You need indexed/random access to elements
You know the number of elements in the array ahead of time
so that you can allocate the correct amount of memory for
the array
You need speed when iterating through all the elements in
sequence.

Binary Trees:
Binary Search Tree - Used in many search applications where
data is constantly entering/leaving
Heaps
GGM Trees
Syntax Tree

Applications

 Topic 5 Page 12

Preview from Notesale.co.uk

Page 12 of 12

