
Students should be able to describe the features of OOP that distinguish it from other approaches to computer programming.

Topic Class Notes Organised Notes

D.2.1 Define the term 
encapsulation. 

Encapsulation is the hiding of the 
internal details of a software 
component. The scope of data 
should be confined to the object 
which stores that data.

• Encapsulation is putting private variables and public methods together in a class. The variables can only be 
accessed from other classes by using the get and set methods.

•

IB Question:
Outline how security can be enhanced by using encapsulation.

D.2.2 Define the term 
inheritance.

Inheritance - when a class is based 
on another class it can inherit its 
data and actions. We say that the 
subclass extends the superclass. 

•

Extends - keyword creates a 
subclass (is a relationship)

•

e.g. Boss gets all the stuff an 
Employee has

•

Inheritance so we don't have to type 
it again

•

Inheritance is when a class is based on another class and inherits its data and actions. The subclass extends the 
superclass.

•

Extends is a keyword that creates a subclass•

D.2.3 Define the term 
polymorphism. 

A variable is polymorphic if it can 
take on an instance of a number of 
different (sub)classes. The different 
subclasses can have different 
implementations of methods.

•

Doesn't need to worry about if…•

Polymorphism is the ability to create a variable, a function, or an object that has more than one form.•
Polymorphism allows you to create a subclass of an existing class and redefine how a method works, so that 
when the method is called by other code (or even the super class's code) your method is executed instead.

•

D.2.4 Explain the advantages of 
encapsulation.

The fields of a class can be made 
read-only or write-only.

•

A class can have total control over 
what is stored in its fields.

•

The users of a class do not know 
how the class stores its data. A class 
can change the data type of a field 
and users of the class do not need 
to change any of their code.

•

From 
https://www.tutorialspoint.com/java/java_e
ncapsulation.htm

Only allows access to methods 
that access it (other classes 
don't have access)
The variables can't be 
changed from other classes

Advantages of private variables:•

Encapsulation limits dependencies 
in code. This can limit errors and 
side-effects of changes.

•

Advantages of encapsulation

The variables of a class can be made read-only or write-only•

A class can have total control over what is stored in variables and not have conflicting classes that conflict 
the variables

•

A class can change the data type of a field when parsing from one variable to another. The code in the class 
does not have to be changed.

•

Advantages of private variables

Private variables only allows access to specific methods. Other classes that may conflict with it can't access 
it. 

•

The variables can't be changed from other classes.•

D.2.5 Explain the advantages of 
inheritance.

Key benefit inheritance minimize 
the amount of dupe code in 
application sharing common codee 
amongst several subclasses.

•

More flexibile to change because 
classes inherit from a common 
superclass can be use 
interchangeable.

•

Reusability•
Inheritance allows for similar classes 
to reuse the same methods without 
retyping the same code.

•

Advantages of inheritance

Inheritance minimizes the amount of duplicate code by sharing the same code with several subclasses•

Inheritance makes the code more flexible because multiple classes can inherit from a common superclass 
and the code can be used wherever.

•

The same code can be reused without having to rewrite it.•

D.2.6 Explain the advantages of 
polymorphism.

Polymorphism allows external code 
to call the methods of the 
superclass without needing to know 
the implementation details of the 
method.

•
Polymorphism allows external code to call the methods of the superclass without needing to know the 
implementation details of a method

-

Allows methods that perform similar or closely related functions to be accessed through a common name-

Advantages of polymorphism:

D.2.7 Describe the advantages of 
libraries of objects.

Provides easy method of reusing 
objects

•

Saves time by copy/pasting already 
made code to the program

•

Restricts certain methods and 
actions if you're not using them

•

Java.lang
Java.lang.Math
Java.math
Java.io
Java.awt
Many more…

Examples of java libraries•

Advantages of libraries of objects

Using libraries provide an easy method of reusing objects.•

It saves time by copy and pasting already made code to the program•

Libraries lets you dictate what objects you need and objects you don't need.•

IB Question:

It is safer;-

Because using different arrays would make keeping data for one object more difficult to keep together-

Less chance of data being overwritten from other modules-

It is more convenient for programming-

As programming with objects allows advantages of modularity-

e.g. use of a team of programmers takign specific modules-

Explain why it is convenient to store data as objects. [3 marks]

D.2.8 Describe the 
disadvantages of OOP

It can be difficult to initially 
comprehend concepts such as 
inheritance and polymorphism

•

It can be difficult and unnecessary •

It can be difficult to initially comprehend concepts such as inheritance and polymorphism.-

It can be difficult and unnecessary to use objects to solve particular problems-

For some problems, the amount of code necessary is much larger with OOP.-

Disadvantages of OOP:

D.2 Features of OOP

   OOP Page 9    

Preview from Notesale.co.uk

Page 9 of 20



Topic Class Notes Organised Notes

D.3.1 Define the terms: class, 
identifier, primitive, instance 
variable, parameter variable, 
local variable.

Class - a template for objects•
Anything called .java is a class
Class contains methods and variables (things 
about an object and things an object can 
do.)

Can have multiple objects in 
class but cannot have the 
same identifier

•

Without an object, class can't be 
used

•

Class is a template that outlines 
things about an object and thing 
that object can do

•

.java class (within that, you create 
instance of object)

•

Open - contains variable called 
application

•

Null means there is nothing there

Error - null pointer exception•

Pointing to a reference point in 
memory but it isn't there

•

Error is runtime (won't tell there is a 
problem unless run)

•

Compile and syntax - synonymous•
Syntax error occurs when something 
is written incorrectly

•

Null - an object is not available, 
index number is not there in array

•

Logical error - everything is right but 
it doesn't do what is expected.

•

Another logical error is dividing by 0•
Identifier•
Label for a variable, object, method, 
class

•

Anything that has a name that can 
be referenced has an identifier

•

Identifier are ways in which 
something can be referenced (class, 
object, variable, method, all need 
identifiers)

•

Need to be able to understand what 
that thing is

•

Primitive - the simplest form of data 
(storing)

•

Boolean - 1 bit

Byte - 8 bit
Char - 16 bit or 7/8 bit (code in java 

and have ability to have multiple 
languages to code in)

Short - 16 bit (whole number)
Int - 32 bit
Float - 32 bit
Long - 64 bit
Double 64 bit

8 primitive data sizes with bit sizes•

Parameter variable - variable used 
within a method's parameters

•

Formal parameter - data type that is 
expected within method signature

•

Public void Customer (String name) 
{ } Customer ("Hello");

•

Parameter - data types and names 
that are used within methods

•

A class is a template for objects which defines the attributes and behaviours of objects within the 
class. It contains methods and variables.

•

An identifier is a name that refers to a variable, method, class, package.•
A primitive data type is the simplest form of data within the Java language (boolean, byte, char, 
short, int, float, long, double)

•

An instance variable is a variable that is declared in a class but outside a method, constructor or 
block

•

A local variable is a variable that is declared in methods, constructors or blocks. It can only be used 
within a method.

•

A formal parameter is the data type that is expected within the method signature.•

Declaring an array:

D.3.2 Define the terms: method, 
accessor, mutator, constructor, 
signature, return value.

Method - behaviour of object•
Algorithm that is called upon an 
object which causes an object to do 
something

•

Methods are invoked on an object. •
Constructor•
Accessor - method that retrieves a 
variable's value (e.g. getAge())

•

Mutator - sets the value (e.g. setAge())•

Method signature is method name 
and formal parameters combined

Signature•

Value that is returned after a method 
is called
Uses key word return

Return value•

A method is an algorithm that is invoked on an object which causes an object to do something•
A constructor method is method that is invoked when creating a new instance of an object. A 
constructor method has the exact same name as the class it's in.

•

An accessor is a method that retrieves a variable's value•
A mutator is a method that sets a variable's value•
A signature is a method name and formal parameters combined•
A return value is a value that is returned after a method is called•

Validation is checking if two values match•
Verification is checking a value with another value that is already stored•
Accessor:

Mutator:

D.3 Program development
7:32 PM

   OOP Page 11    

Preview from Notesale.co.uk

Page 11 of 20



return (numItems == 0);
public boolean isEmpty() {

}

isFull()

return true;
if (numItems == MAX_LIST) { // checks if the number of items is at the maximum capacity 

return false;
} else {

}

public boolean isFull() {

}

peek()

return(items[0]);
public int peek() {

}

Stack:
push()

list.addHead(item);
public void push (int item) {

}

pop()

int item = peek();
list.delete(0);
return item;

public int pop() {

}

peek()

return list.peek();
public int peek() {

}

isEmpty()

return list.isEmpty();
public boolean isEmpty() {

}

Queue:
enqueue()

list.addHead(item);
public void enqueue (int item) {

}

dequeue()

list.delete(this.size());
public void dequeue() {

}

isEmpty()

return list.isEmpty();
public boolean isEmpty() {

}

   OOP Page 20    

Preview from Notesale.co.uk

Page 20 of 20


